题目内容
2.求值:(1)若tanα=2,求$\frac{si{n}^{2}α+3sinα•cosα}{co{s}^{2}α-si{n}^{2}α}$;
(2)$\frac{1}{sin10°}$-$\frac{\sqrt{3}}{cos10°}$.
分析 (1)由条件利用同角三角函数的基本关系,求得要求式子的值.
(2)由条件利用两角和差的三角公式,二倍角公式,求得要求式子的值.
解答 (1)(1)若tanα=2,则 $\frac{si{n}^{2}α+3sinα•cosα}{co{s}^{2}α-si{n}^{2}α}$=$\frac{{tan}^{2}α+3tanα}{1{-tan}^{2}α}$=$\frac{4+3×2}{1-4}$=-$\frac{10}{3}$.
(2)$\frac{1}{sin10°}$-$\frac{\sqrt{3}}{cos10°}$=$\frac{cos10°-\sqrt{3}sin10°}{sin10°cos10°}$=$\frac{2sin(30°-10°)}{\frac{1}{2}sin20°}$=4.
点评 本题主要考查同角三角函数的基本关系,两角和差的三角公式,二倍角公式的应用,属于基础题.
练习册系列答案
相关题目
13.设全集U=R,集合A={x|log2x≤2},$B=\left\{{x|\frac{4}{3-x}≥1}\right\}$,则A∩B=( )
| A. | [-1,3) | B. | (-∞,-1]∪(3,4] | C. | (0,3] | D. | (0,3) |
10.已知数列{cn}的前n项和为Tn,若数列{cn}满足各项均为正项,并且以(cn,Tn)(n∈N*)为坐标的点都在曲线$ay=\frac{a}{2}{x^2}+\frac{a}{2}x+b,(a为非0常数)$上运动,则称数列{cn}为“抛物数列”.已知数列{bn}为“抛物数列”,则( )
| A. | {bn}一定为等比数列 | B. | {bn}一定为等差数列 | ||
| C. | {bn}只从第二项起为等比数列 | D. | {bn}只从第二项起为等差数列 |
17.2015年8月12日天津发生危化品重大爆炸事故,造成重大人员和经济损失.某港口组织消防人员对该港口的公司的集装箱进行安全抽检,已知消防安全等级共分为四个等级(一级为优,二级为良,三级为中等,四级为差),该港口消防安全等级的统计结果如下表所示:
现从该港口随机抽取了n家公司,其中消防安全等级为三级的恰有20家.
(1)求m,n的值;
(2)按消防安全等级利用分层抽样的方法从这n家公司中抽取10家,除去消防安全等级为一级和四级的公司后,再从剩余公司中任意抽取2家,求抽取的这2家公司的消防安全等级都是二级的概率.
| 等 级 | 一级 | 二级 | 三级 | 四级 |
| 频 率 | 0.30 | 2m | m | 0.10 |
(1)求m,n的值;
(2)按消防安全等级利用分层抽样的方法从这n家公司中抽取10家,除去消防安全等级为一级和四级的公司后,再从剩余公司中任意抽取2家,求抽取的这2家公司的消防安全等级都是二级的概率.