题目内容
如图,一个几何体的三视图是三个直角三角形,则该几何体的体积为( )

A、
| ||
B、
| ||
| C、1 | ||
| D、2 |
考点:由三视图求面积、体积
专题:计算题,空间位置关系与距离
分析:三视图中长对正,高对齐,宽相等;由三视图想象出直观图,一般需从俯视图构建直观图,该几何体为三棱锥.
解答:
解:该几何体为三棱锥,
其体积为V=
×
×3×1×2=1,
故选C.
其体积为V=
| 1 |
| 3 |
| 1 |
| 2 |
故选C.
点评:三视图中长对正,高对齐,宽相等;由三视图想象出直观图,一般需从俯视图构建直观图,本题考查了学生的空间想象力,识图能力及计算能力.
练习册系列答案
相关题目
已知定义在R上的奇函数f(x)满足f(2-x)=f(x)恒成立,且当x∈(-1,0)时,f(x)=ln(x+1),则当x∈(2013,2014)时,f(x)=( )
| A、-ln(x-2013) |
| B、ln(x-2013) |
| C、-ln(2014-x) |
| D、ln(2014-x) |
函数f(x)=log2(cosx-
sinx)的单调递减区间是( )
| 3 |
A、(2kπ-
| ||||
B、(2kπ-
| ||||
C、(2kπ+
| ||||
D、(2kπ+
|