ÌâÄ¿ÄÚÈÝ
Çë×ÐϸÔĶÁÒÔϲÄÁÏ£º
ÒÑÖªf£¨x£©ÊǶ¨ÒåÔÚ£¨0£¬+¡Þ£©Éϵĵ¥µ÷µÝÔöº¯Êý£®
ÇóÖ¤£ºÃüÌâ¡°Éèa£¬b¡ÊR+£¬Èôab£¾1£¬Ôòf(a)+f(b)£¾f(
)+f(
)¡±ÊÇÕæÃüÌ⣮
Ö¤Ã÷ ÒòΪa£¬b¡ÊR+£¬ÓÉab£¾1µÃa£¾
£¾0£®
ÓÖÒòΪf£¨x£©ÊǶ¨ÒåÔÚ£¨0£¬+¡Þ£©Éϵĵ¥µ÷µÝÔöº¯Êý£¬
ÓÚÊÇÓÐf(a)£¾f(
)£® ¢Ù
ͬÀíÓÐf(b)£¾f(
)£® ¢Ú
ÓÉ¢Ù+¢ÚµÃf(a)+f(b)£¾f(
)+f(
)£®
¹Ê£¬ÃüÌâ¡°Éèa£¬b¡ÊR+£¬Èôab£¾1£¬Ôòf(a)+f(b)£¾f(
)+f(
)¡±ÊÇÕæÃüÌ⣮
ÇëÕë¶ÔÒÔÉÏÔĶÁ²ÄÁÏÖеÄf£¨x£©£¬½â´ðÒÔÏÂÎÊÌ⣺
£¨1£©ÊÔÓÃÃüÌâµÄµÈ¼ÛÐÔÖ¤Ã÷£º¡°Éèa£¬b¡ÊR+£¬Èôf(a)+f(b)£¾f(
)+f(
)£¬Ôò£ºab£¾1¡±ÊÇÕæÃüÌ⣻
£¨2£©½â¹ØÓÚxµÄ²»µÈʽf£¨ax-1£©+f£¨2x£©£¾f£¨a1-x£©+f£¨2-x£©£¨ÆäÖÐa£¾0£©£®
ÒÑÖªf£¨x£©ÊǶ¨ÒåÔÚ£¨0£¬+¡Þ£©Éϵĵ¥µ÷µÝÔöº¯Êý£®
ÇóÖ¤£ºÃüÌâ¡°Éèa£¬b¡ÊR+£¬Èôab£¾1£¬Ôòf(a)+f(b)£¾f(
| 1 |
| a |
| 1 |
| b |
Ö¤Ã÷ ÒòΪa£¬b¡ÊR+£¬ÓÉab£¾1µÃa£¾
| 1 |
| b |
ÓÖÒòΪf£¨x£©ÊǶ¨ÒåÔÚ£¨0£¬+¡Þ£©Éϵĵ¥µ÷µÝÔöº¯Êý£¬
ÓÚÊÇÓÐf(a)£¾f(
| 1 |
| b |
ͬÀíÓÐf(b)£¾f(
| 1 |
| a |
ÓÉ¢Ù+¢ÚµÃf(a)+f(b)£¾f(
| 1 |
| a |
| 1 |
| b |
¹Ê£¬ÃüÌâ¡°Éèa£¬b¡ÊR+£¬Èôab£¾1£¬Ôòf(a)+f(b)£¾f(
| 1 |
| a |
| 1 |
| b |
ÇëÕë¶ÔÒÔÉÏÔĶÁ²ÄÁÏÖеÄf£¨x£©£¬½â´ðÒÔÏÂÎÊÌ⣺
£¨1£©ÊÔÓÃÃüÌâµÄµÈ¼ÛÐÔÖ¤Ã÷£º¡°Éèa£¬b¡ÊR+£¬Èôf(a)+f(b)£¾f(
| 1 |
| a |
| 1 |
| b |
£¨2£©½â¹ØÓÚxµÄ²»µÈʽf£¨ax-1£©+f£¨2x£©£¾f£¨a1-x£©+f£¨2-x£©£¨ÆäÖÐa£¾0£©£®
¿¼µã£º³éÏóº¯Êý¼°ÆäÓ¦ÓÃ,ËÄÖÖÃüÌâ,ÆäËû²»µÈʽµÄ½â·¨
רÌ⣺º¯ÊýµÄÐÔÖʼ°Ó¦ÓÃ
·ÖÎö£º£¨1£©ÏÈд³öÔÃüÌâµÄÄæ·ñÃüÌ⣺Éèa£¬b¡ÊR+£¬Èôab¡Ü1£¬Ôò£ºf(a)+f(b)¡Üf(
)+f(
)£¬ÓÉÓÚÔÃüÌâÓëÔÃüÌâµÄÄæ·ñÃüÌâÊǵȼÛÃüÌ⣬֤Ã÷ÔÃüÌâµÄÄæ·ñÃüÌâÎªÕæÃüÌ⣻
£¨2£©ÀûÓã¨1£©µÄ½áÂÛÓУºax-1•2x£¾1£¬¼´£º£¨2a£©x£¾a£¬ÔÙ·Ö¢Ùµ±2a£¾1ʱ¡¢¢Úµ±0£¼2a£¼1ʱ¡¢¢Ûµ±2a=1ʱÈýÖÖÇé¿ö£¬Ð´³ö²»µÈʽµÄ½â¼¯£®
| 1 |
| a |
| 1 |
| b |
£¨2£©ÀûÓã¨1£©µÄ½áÂÛÓУºax-1•2x£¾1£¬¼´£º£¨2a£©x£¾a£¬ÔÙ·Ö¢Ùµ±2a£¾1ʱ¡¢¢Úµ±0£¼2a£¼1ʱ¡¢¢Ûµ±2a=1ʱÈýÖÖÇé¿ö£¬Ð´³ö²»µÈʽµÄ½â¼¯£®
½â´ð£º
½â£º£¨1£©ÔÃüÌâÓëÔÃüÌâµÄÄæ·ñÃüÌâÊǵȼÛÃüÌ⣮
ÔÃüÌâµÄÄæ·ñÃüÌ⣺Éèa£¬b¡ÊR+£¬Èôab¡Ü1£¬Ôò£ºf(a)+f(b)¡Üf(
)+f(
)£¬
ÏÂÃæÖ¤Ã÷ÔÃüÌâµÄÄæ·ñÃüÌâÎªÕæÃüÌ⣺
ÒòΪa£¬b¡ÊR+£¬ÓÉab¡Ü1£¬µÃ£º0£¼a¡Ü
£¬
ÓÖf£¨x£©ÊǶ¨ÒåÔÚ£¨0£¬+¡Þ£©Éϵĵ¥µ÷µÝÔöº¯Êý
ËùÒÔf(a)¡Üf(
)¡£¨1£©
ͬÀíÓУºf(b)¡Üf(
)¡£¨2£©
ÓÉ£¨1£©+£¨2£©µÃ£ºf(a)+f(b)¡Üf(
)+f(
)
ËùÒÔÔÃüÌâµÄÄæ·ñÃüÌâÎªÕæÃüÌâ
ËùÒÔÔÃüÌâÎªÕæÃüÌ⣮
£¨2£©ÓÉ£¨1£©µÄ½áÂÛÓУºax-1•2x£¾1£¬¼´£º£¨2a£©x£¾a£¬
¢Ùµ±2a£¾1ʱ£¬¼´a£¾
ʱ£¬²»µÈʽµÄ½â¼¯Îª£º£¨log2aa£¬+¡Þ£©£»
¢Úµ±0£¼2a£¼1ʱ£¬¼´0£¼a£¼
ʱ£¬²»µÈʽµÄ½â¼¯Îª£º£¨-¡Þ£¬log2aa£©£»
¢Ûµ±2a=1ʱ£¬¼´a=
ʱ£¬²»µÈʽµÄ½â¼¯Îª£ºR£®
ÔÃüÌâµÄÄæ·ñÃüÌ⣺Éèa£¬b¡ÊR+£¬Èôab¡Ü1£¬Ôò£ºf(a)+f(b)¡Üf(
| 1 |
| a |
| 1 |
| b |
ÏÂÃæÖ¤Ã÷ÔÃüÌâµÄÄæ·ñÃüÌâÎªÕæÃüÌ⣺
ÒòΪa£¬b¡ÊR+£¬ÓÉab¡Ü1£¬µÃ£º0£¼a¡Ü
| 1 |
| b |
ÓÖf£¨x£©ÊǶ¨ÒåÔÚ£¨0£¬+¡Þ£©Éϵĵ¥µ÷µÝÔöº¯Êý
ËùÒÔf(a)¡Üf(
| 1 |
| b |
ͬÀíÓУºf(b)¡Üf(
| 1 |
| a |
ÓÉ£¨1£©+£¨2£©µÃ£ºf(a)+f(b)¡Üf(
| 1 |
| a |
| 1 |
| b |
ËùÒÔÔÃüÌâµÄÄæ·ñÃüÌâÎªÕæÃüÌâ
ËùÒÔÔÃüÌâÎªÕæÃüÌ⣮
£¨2£©ÓÉ£¨1£©µÄ½áÂÛÓУºax-1•2x£¾1£¬¼´£º£¨2a£©x£¾a£¬
¢Ùµ±2a£¾1ʱ£¬¼´a£¾
| 1 |
| 2 |
¢Úµ±0£¼2a£¼1ʱ£¬¼´0£¼a£¼
| 1 |
| 2 |
¢Ûµ±2a=1ʱ£¬¼´a=
| 1 |
| 2 |
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²é³éÏóº¯ÊýµÄ×ÛºÏÓ¦Ó㬲¢Í¬Ê±¿¼²éÖ¤Ã÷ÕæÃüÌâµÄ·½·¨£¬ÆäÖУ¬ÔÃüÌâÓëÔÃüÌâµÄÄæ·ñÃüÌâÊǵȼÛÃüÌâÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÒÑ֪˫ÇúÏßC£º
-
=1£¨a£¾0£¬b£¾0£©µÄÒ»Ìõ½¥½üÏß·½³ÌÊÇy=-
x£¬ËüµÄÒ»¸ö½¹µãÔÚÅ×ÎïÏßy2=-24xµÄ×¼ÏßÉÏ£¬ÔòË«ÇúÏߵķ½³ÌΪ£¨¡¡¡¡£©
| x2 |
| a2 |
| y2 |
| b2 |
| 3 |
A¡¢
| ||||
B¡¢
| ||||
C¡¢
| ||||
D¡¢
|