题目内容

在青岛崂山区附近有一个小岛的周围有环岛暗礁,暗礁分布在以小岛的中心为圆心,半径为30km的圆形区域.已知小岛中心位于轮船正西70km处,港口位于小岛中心正北40km处.如果轮船沿直线返港,那么它是否会有触礁危险?为什么?
考点:解三角形的实际应用
专题:应用题,直线与圆
分析:我们以港口中心为原点O,东西方向为x轴,建立如图所示的直角坐标系.进而可推断出以小岛的中心为圆心,半径为30km的圆形区域所对应的圆的方程,及轮船航线所在直线l的方程,进而求得圆心到直线的距离,解果大于半径推断出轮船没有触礁危险.
解答: 解:我们以港口中心为原点O,东西方向为x轴,建立如图所示的直角坐标系.
这样,以小岛的中心为圆心,半径为30km的圆形区域所对应的圆的方程为x2+y2=302
轮船航线所在直线l的方程为
x
70
+
y
40
=1
,即4x+7y-280=0②
如果圆O与直线l有公共点,则轮船有触礁危险,需要改变航向;如果O与直线l无公共点,则轮船没有触礁危险,无需改变航向.
由于圆心O(0,0)到直线l的距离d=
280
65
>30,
所以直线l与圆O无公共点.这说明轮船将没有触礁危险,不用改变航向.
点评:本题主要考查了根据实际问题选择函数类型.解题的关键是看圆与直线是否有交点.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网