ÌâÄ¿ÄÚÈÝ
ÒÑÖªF1£¬F2ΪÍÖÔ²C£º
+
=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒÁ½¸ö½¹µã£¬ÇÒÍÖÔ²CÉϵĵãA£¨1£¬
£©µ½Á½¸ö½¹µãF1¡¢F2µÄ¾àÀëÖ®ºÍΪ4£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£¬²¢Ð´³öÆä½¹µãF1¡¢F2µÄ×ø±ê£»
£¨2£©¹ýÍÖÔ²CµÄÓÒ½¹µãF2ÈÎ×÷Ò»ÌõÓëÁ½×ø±êÖá¶¼²»´¹Ö±µÄÏÒAB£¬ÈôµãMÔÚxÖáÉÏ£¬ÇÒÖ±ÏßMAÓëÖ±ÏßMB¹ØÓÚxÖá¶Ô³Æ£¬ÇóµãMµÄ×ø±ê£»
£¨3£©¸ù¾Ý£¨2£©ÖеĽáÂÛÌØÕ÷£¬²ÂÏë³ö¹ØÓÚËùÓÐÍÖÔ²
+
=1£¨a£¾b£¾0£©µÄÒ»¸öÒ»°ã½áÂÛ£¨²»ÐèÖ¤Ã÷£©£®
| x2 |
| a2 |
| y2 |
| b2 |
| 3 |
| 2 |
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£¬²¢Ð´³öÆä½¹µãF1¡¢F2µÄ×ø±ê£»
£¨2£©¹ýÍÖÔ²CµÄÓÒ½¹µãF2ÈÎ×÷Ò»ÌõÓëÁ½×ø±êÖá¶¼²»´¹Ö±µÄÏÒAB£¬ÈôµãMÔÚxÖáÉÏ£¬ÇÒÖ±ÏßMAÓëÖ±ÏßMB¹ØÓÚxÖá¶Ô³Æ£¬ÇóµãMµÄ×ø±ê£»
£¨3£©¸ù¾Ý£¨2£©ÖеĽáÂÛÌØÕ÷£¬²ÂÏë³ö¹ØÓÚËùÓÐÍÖÔ²
| x2 |
| a2 |
| y2 |
| b2 |
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺Բ׶ÇúÏßÖеÄ×îÖµÓ뷶ΧÎÊÌâ
·ÖÎö£º£¨1£©ÓÉÒÑÖªÌõ¼þµÃ|AF1|+|AF2|=2a=4£¬
+
=1£¬ÓÉ´ËÄÜÇó³öÍÖÔ²CµÄ·½³ÌºÍ½¹µãF1£¬F2£®
£¨2£©ÓÉÌâÒ⣬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬M£¨t£¬0£©£¬ÏÒABËùÔÚµÄÖ±Ïß·½³ÌΪ£ºy=k£¨x-1£©£¬Ôòy1=k£¨x1-1£©£¬y2=k£¨x2-1£©£¬ÓÉ
£¬µÃ£¨4k2+3£©x2-8k2x+£¨4k2-12£©=0£¬ÓÉ´ËÀûÓÃΤ´ï¶¨Àí½áºÏÒÑÖªÌõ¼þÄÜÇó³öµãMµÄ×ø±ê£®
£¨3£©ÀûÓã¨2£©ÖеĽáÂÛÌØÕ÷½øÐйéÄÉ×ܽᣬÄܹ»²ÂÏë³ö¹ØÓÚËùÓÐÍÖÔ²
+
=1£¨a£¾b£¾0£©µÄÒ»¸öÒ»°ã½áÂÛ£®
| 1 |
| 4 |
| ||
| b2 |
£¨2£©ÓÉÌâÒ⣬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬M£¨t£¬0£©£¬ÏÒABËùÔÚµÄÖ±Ïß·½³ÌΪ£ºy=k£¨x-1£©£¬Ôòy1=k£¨x1-1£©£¬y2=k£¨x2-1£©£¬ÓÉ
|
£¨3£©ÀûÓã¨2£©ÖеĽáÂÛÌØÕ÷½øÐйéÄÉ×ܽᣬÄܹ»²ÂÏë³ö¹ØÓÚËùÓÐÍÖÔ²
| x2 |
| a2 |
| y2 |
| b2 |
½â´ð£º
½â£º£¨1£©¡ß|AF1|+|AF2|=2a=4£¬¡àa=2£¬
ÓÖA£¨1£¬
£©ÔÚÍÖÔ²C£º
+
=1£¨a£¾b£¾0£©ÉÏ£¬
¡à
+
=1£¬½âµÃb2=3£¬
¡ßc2=a2-b2=4-3=1£¬¡àc=1£¬
¡àÍÖÔ²CµÄ·½³ÌÊÇ
+
=1£¬½¹µãΪF1£¨-1£¬0£©£¬F2£¨1£¬0£©£®
£¨2£©ÓÉÌâÒ⣬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬M£¨t£¬0£©£¬
ÏÒABËùÔÚµÄÖ±Ïß·½³ÌΪ£ºy=k£¨x-1£©£¬
Ôòy1=k£¨x1-1£©£¬y2=k£¨x2-1£©£¬
½â·½³Ì×é
£¬µÃ£¨4k2+3£©x2-8k2x+£¨4k2-12£©=0£¬
ÓÉΤ´ï¶¨Àí£¬µÃx1+x2=
£¬¢Ù
x1x2=
£¬¢Ú
¡ßÖ±ÏßMAÓëÖ±ÏßMB¹ØÓÚxÖá¶Ô³Æ£¬
¡àkAM+kBM=0£¬¡à
+
=0£¬
t=
=
=
=4£¬
¡àµãMµÄ×ø±êΪ£¨4£¬0£©£®
£¨3£©¹ýÍÖÔ²C£º
+
=1£¨a£¾b£¾0£©µÄÓÒ½¹µãF2£¨»ò×ó½¹µãF1£©ÈÎ×÷Ò»ÌõÓëÁ½×ø±êÖá¶¼²»´¹Ö±µÄÏÒAB£¬ÈôµãMÔÚxÖáÉÏ£¬ÇÒÖ±ÏßMAÓëÖ±ÏßMB¹ØÓÚxÖá¶Ô³Æ£¬ÔòµãMΪ¶¨µã(
£¬0)£¨»ò(-
£¬0)£©£®
ÓÖA£¨1£¬
| 3 |
| 2 |
| x2 |
| a2 |
| y2 |
| b2 |
¡à
| 1 |
| 4 |
| ||
| b2 |
¡ßc2=a2-b2=4-3=1£¬¡àc=1£¬
¡àÍÖÔ²CµÄ·½³ÌÊÇ
| x2 |
| 4 |
| y2 |
| 3 |
£¨2£©ÓÉÌâÒ⣬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬M£¨t£¬0£©£¬
ÏÒABËùÔÚµÄÖ±Ïß·½³ÌΪ£ºy=k£¨x-1£©£¬
Ôòy1=k£¨x1-1£©£¬y2=k£¨x2-1£©£¬
½â·½³Ì×é
|
ÓÉΤ´ï¶¨Àí£¬µÃx1+x2=
| 8k2 |
| 4k2+3 |
x1x2=
| 4k2-12 |
| 4k2+3 |
¡ßÖ±ÏßMAÓëÖ±ÏßMB¹ØÓÚxÖá¶Ô³Æ£¬
¡àkAM+kBM=0£¬¡à
| y1 |
| x1-t |
| y2 |
| x2-t |
t=
| x1y2+x2y1 |
| y1+y2 |
| 2x1x2-(x1+x2) |
| x1+x2-2 |
2¡Á
| ||||
|
¡àµãMµÄ×ø±êΪ£¨4£¬0£©£®
£¨3£©¹ýÍÖÔ²C£º
| x2 |
| a2 |
| y2 |
| b2 |
| a2 |
| c |
| a2 |
| c |
µãÆÀ£º±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éµãµÄ×ø±êµÄÇ󷨣¬¿¼²éÍÖÔ²µÄÒ»°ãÐÔ½áÂ۵IJÂÏ룬½âÌâʱҪÈÏÕæÉóÌ⣬עÒ⺯ÊýÓë·½³Ì˼ÏëµÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
Ò»¸öÈÝÁ¿Îª1000µÄÑù±¾·Ö³ÉÈô¸É×飬ÒÑ֪ij×éµÄƵÂÊΪ0.4£¬Ôò¸Ã×éµÄƵÊýÊÇ£¨¡¡¡¡£©
| A¡¢400 | B¡¢40 | C¡¢4 | D¡¢600 |
¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©Âú×ãf£¨x+2£©=3f£¨x£©£¬µ±x¡Ê[0£¬2]ʱ£¬f£¨x£©=4x2-12x£¬Ôòµ±x¡Ê[-4£¬-2]ʱ£¬f£¨x£©µÄ×îСֵÊÇ£¨¡¡¡¡£©
| A¡¢-3 | B¡¢9 | C¡¢-9 | D¡¢-1 |
ÒÑÖª¼¯ºÏA={x||x|¡Üa£¬a£¾0}£¬¼¯ºÏB={-2£¬-1£¬0£¬1£¬2}£¬ÇÒA¡ÉB={-1£¬0£¬1}£¬ÔòaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
| A¡¢£¨1£¬2£© |
| B¡¢[1£¬2£© |
| C¡¢£¨1£¬2] |
| D¡¢£¨0£¬1] |
ÒÑÖª·ÇÁãÏòÁ¿
£¬
£¬Âú×ã|
+
|=|
-
|£¬Ôò£¨¡¡¡¡£©
| a |
| b |
| a |
| b |
| a |
| b |
A¡¢
| ||||
B¡¢
| ||||
C¡¢
| ||||
D¡¢
|