ÌâÄ¿ÄÚÈÝ

ÒÑÖªF1£¬F2ΪÍÖÔ²C£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒÁ½¸ö½¹µã£¬ÇÒÍÖÔ²CÉϵĵãA£¨1£¬
3
2
£©µ½Á½¸ö½¹µãF1¡¢F2µÄ¾àÀëÖ®ºÍΪ4£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£¬²¢Ð´³öÆä½¹µãF1¡¢F2µÄ×ø±ê£»
£¨2£©¹ýÍÖÔ²CµÄÓÒ½¹µãF2ÈÎ×÷Ò»ÌõÓëÁ½×ø±êÖá¶¼²»´¹Ö±µÄÏÒAB£¬ÈôµãMÔÚxÖáÉÏ£¬ÇÒÖ±ÏßMAÓëÖ±ÏßMB¹ØÓÚxÖá¶Ô³Æ£¬ÇóµãMµÄ×ø±ê£»
£¨3£©¸ù¾Ý£¨2£©ÖеĽáÂÛÌØÕ÷£¬²ÂÏë³ö¹ØÓÚËùÓÐÍÖÔ²
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄÒ»¸öÒ»°ã½áÂÛ£¨²»ÐèÖ¤Ã÷£©£®
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺Բ׶ÇúÏßÖеÄ×îÖµÓ뷶ΧÎÊÌâ
·ÖÎö£º£¨1£©ÓÉÒÑÖªÌõ¼þµÃ|AF1|+|AF2|=2a=4£¬
1
4
+
9
4
b2
=1
£¬ÓÉ´ËÄÜÇó³öÍÖÔ²CµÄ·½³ÌºÍ½¹µãF1£¬F2£®
£¨2£©ÓÉÌâÒ⣬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬M£¨t£¬0£©£¬ÏÒABËùÔÚµÄÖ±Ïß·½³ÌΪ£ºy=k£¨x-1£©£¬Ôòy1=k£¨x1-1£©£¬y2=k£¨x2-1£©£¬ÓÉ
y=k(x-1)
x2
4
+
y2
3
=1
£¬µÃ£¨4k2+3£©x2-8k2x+£¨4k2-12£©=0£¬ÓÉ´ËÀûÓÃΤ´ï¶¨Àí½áºÏÒÑÖªÌõ¼þÄÜÇó³öµãMµÄ×ø±ê£®
£¨3£©ÀûÓã¨2£©ÖеĽáÂÛÌØÕ÷½øÐйéÄÉ×ܽᣬÄܹ»²ÂÏë³ö¹ØÓÚËùÓÐÍÖÔ²
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄÒ»¸öÒ»°ã½áÂÛ£®
½â´ð£º ½â£º£¨1£©¡ß|AF1|+|AF2|=2a=4£¬¡àa=2£¬
ÓÖA£¨1£¬
3
2
£©ÔÚÍÖÔ²C£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©ÉÏ£¬
¡à
1
4
+
9
4
b2
=1
£¬½âµÃb2=3£¬
¡ßc2=a2-b2=4-3=1£¬¡àc=1£¬
¡àÍÖÔ²CµÄ·½³ÌÊÇ
x2
4
+
y2
3
=1
£¬½¹µãΪF1£¨-1£¬0£©£¬F2£¨1£¬0£©£®
£¨2£©ÓÉÌâÒ⣬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬M£¨t£¬0£©£¬
ÏÒABËùÔÚµÄÖ±Ïß·½³ÌΪ£ºy=k£¨x-1£©£¬
Ôòy1=k£¨x1-1£©£¬y2=k£¨x2-1£©£¬
½â·½³Ì×é
y=k(x-1)
x2
4
+
y2
3
=1
£¬µÃ£¨4k2+3£©x2-8k2x+£¨4k2-12£©=0£¬
ÓÉΤ´ï¶¨Àí£¬µÃx1+x2=
8k2
4k2+3
£¬¢Ù
x1x2=
4k2-12
4k2+3
£¬¢Ú
¡ßÖ±ÏßMAÓëÖ±ÏßMB¹ØÓÚxÖá¶Ô³Æ£¬
¡àkAM+kBM=0£¬¡à
y1
x1-t
+
y2
x2-t
=0
£¬
t=
x1y2+x2y1
y1+y2
=
2x1x2-(x1+x2)
x1+x2-2
=
2¡Á
4k2-12
4k2+3
-
8k2
4k2+3
8k2
4k2+3
=4£¬
¡àµãMµÄ×ø±êΪ£¨4£¬0£©£®
£¨3£©¹ýÍÖÔ²C£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄÓÒ½¹µãF2£¨»ò×ó½¹µãF1£©ÈÎ×÷Ò»ÌõÓëÁ½×ø±êÖá¶¼²»´¹Ö±µÄÏÒAB£¬ÈôµãMÔÚxÖáÉÏ£¬ÇÒÖ±ÏßMAÓëÖ±ÏßMB¹ØÓÚxÖá¶Ô³Æ£¬ÔòµãMΪ¶¨µã(
a2
c
£¬0)
£¨»ò(-
a2
c
£¬0)
£©£®
µãÆÀ£º±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éµãµÄ×ø±êµÄÇ󷨣¬¿¼²éÍÖÔ²µÄÒ»°ãÐÔ½áÂ۵IJÂÏ룬½âÌâʱҪÈÏÕæÉóÌ⣬עÒ⺯ÊýÓë·½³Ì˼ÏëµÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø