题目内容
17.设a>0且a≠1,b>0,若函数y=ax+b的大致图象如图所示,则函数y=logax-b的图象为( )| A. | B. | C. | D. |
分析 利用函数y=ax+b的大致图象,判断a,b的范围,然后推出函数y=logax-b的图象形状即可.
解答 解:函数y=ax+b的大致图象,可知a>1,b>0,故函数y=logax-b是增函数,排除CD,当x=1时,y=logax-b=-b<0,排除B,
故选:A.
点评 本题考查函数的图象的判断与应用,考查转化思想以及计算能力.
练习册系列答案
相关题目
7.某市春节期间7家超市的广告费支出xi(万元)和销售额yi(万元)数据如下:
(1)若用线性回归模型拟合y与x的关系,求y关于x的线性回归方程;
(2)用对数回归模型拟合y与x的关系,可得回归方程:$\widehaty=12lnx+22$,
经计算得出线性回归模型和对数模型的R2分别约为0.75和0.97,请用R2说明选择哪个回归模型更合适,并用此模型预测A超市广告费支出为8万元时的销售额.
参数数据及公式:$\overline x=8\;\;,\;\;\overline y=42$,$\sum_{i=1}^7{{x_i}{y_i}}=2794\;\;,\;\;\sum_{i=1}^7{{x_i}^2}=708$,$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n•\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}\;\;,\;\;\widehata=\overline y-\widehatb\overline x$,ln2≈0.7.
| 超市 | A | B | C | D | E | F | G |
| 广告费支出xi | 1 | 2 | 4 | 6 | 11 | 13 | 19 |
| 销售额yi | 19 | 32 | 40 | 44 | 52 | 53 | 54 |
(2)用对数回归模型拟合y与x的关系,可得回归方程:$\widehaty=12lnx+22$,
经计算得出线性回归模型和对数模型的R2分别约为0.75和0.97,请用R2说明选择哪个回归模型更合适,并用此模型预测A超市广告费支出为8万元时的销售额.
参数数据及公式:$\overline x=8\;\;,\;\;\overline y=42$,$\sum_{i=1}^7{{x_i}{y_i}}=2794\;\;,\;\;\sum_{i=1}^7{{x_i}^2}=708$,$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n•\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}\;\;,\;\;\widehata=\overline y-\widehatb\overline x$,ln2≈0.7.
5.设全集U=R,A={x|x2-x-6<0},B={x|y=lg(x+1)},则图中阴影部分表示的集合为( )

| A. | {x|-3<x<-1} | B. | {x|-3<x<0} | C. | {x|-1<x<3} | D. | {x|x>-1} |
2.若$\overrightarrow{a}$,$\overrightarrow{b}$不共线,且λ$\overrightarrow{a}$+μ$\overrightarrow{b}$=$\overrightarrow{0}$(λ,μ∈R),则( )
| A. | $\overrightarrow{a}$=$\overrightarrow{0}$,$\overrightarrow{b}$=$\overrightarrow{0}$ | B. | λ=μ=0 | C. | λ=0,$\overrightarrow{b}$=$\overrightarrow{0}$ | D. | $\overrightarrow{a}$=$\overrightarrow{0}$,μ=0 |