题目内容

已知数列{an}的通项公式是an=
6,n=1
2n+2,n≥2
,设{an}的前n项和为Sn,则
1
S1
+
1
S2
+
1
S4
+…+
1
Sn
=
 
考点:数列的求和
专题:等差数列与等比数列
分析:由an=
6,n=1
2n+2,n≥2
,可求得Sn=n2+3n+2=(n+1)(n+2),于是
1
Sn
=
1
(n+1)(n+2)
=
1
n+1
-
1
n+2
,从而可求答案.
解答: 解:∵an=
6,n=1
2n+2,n≥2

∴当n≥2时,Sn=a1+a2+…+an=2+(4+6+8+10+…+2n+2)=2+
n(4+2n+2)
2
=n2+3n+2,
当n=1时,a1=6,也满足上式;
∴Sn=n2+3n+2=(n+1)(n+2),
1
Sn
=
1
(n+1)(n+2)
=
1
n+1
-
1
n+2

1
S1
+
1
S2
+
1
S4
+…+
1
Sn

=(
1
2
-
1
3
)+(
1
3
-
1
4
)+…+(
1
n+1
-
1
n+2

=
1
2
-
1
n+2
=
n
2(n+2)

故答案为:
n
2(n+2)
点评:本题考查数列的求和,由数列{an}的通项公式an=
6,n=1
2n+2,n≥2
,求得Sn=n2+3n+2=(n+1)(n+2)是关键,也是难点,考查裂项法的应用,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网