题目内容
已知数列{an}的通项公式是an=
,设{an}的前n项和为Sn,则
+
+
+…+
= .
|
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| S4 |
| 1 |
| Sn |
考点:数列的求和
专题:等差数列与等比数列
分析:由an=
,可求得Sn=n2+3n+2=(n+1)(n+2),于是
=
=
-
,从而可求答案.
|
| 1 |
| Sn |
| 1 |
| (n+1)(n+2) |
| 1 |
| n+1 |
| 1 |
| n+2 |
解答:
解:∵an=
,
∴当n≥2时,Sn=a1+a2+…+an=2+(4+6+8+10+…+2n+2)=2+
=n2+3n+2,
当n=1时,a1=6,也满足上式;
∴Sn=n2+3n+2=(n+1)(n+2),
∴
=
=
-
,
∴
+
+
+…+
=(
-
)+(
-
)+…+(
-
)
=
-
=
.
故答案为:
.
|
∴当n≥2时,Sn=a1+a2+…+an=2+(4+6+8+10+…+2n+2)=2+
| n(4+2n+2) |
| 2 |
当n=1时,a1=6,也满足上式;
∴Sn=n2+3n+2=(n+1)(n+2),
∴
| 1 |
| Sn |
| 1 |
| (n+1)(n+2) |
| 1 |
| n+1 |
| 1 |
| n+2 |
∴
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| S4 |
| 1 |
| Sn |
=(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 1 |
| n+2 |
| n |
| 2(n+2) |
故答案为:
| n |
| 2(n+2) |
点评:本题考查数列的求和,由数列{an}的通项公式an=
,求得Sn=n2+3n+2=(n+1)(n+2)是关键,也是难点,考查裂项法的应用,属于难题.
|
练习册系列答案
相关题目
已知四棱锥P-ABCD的侧棱长与底面边长都相等,点E是PB的中点,则异面直线AE与PD所成角的余弦值为( )
A、
| ||||
B、
| ||||
C、
| ||||
D、
|