题目内容
20.以下各式当n→∞时,极限值为$\frac{1}{2}$的是( )| A. | $\frac{n-2}{2n(n+1)}$ | B. | $\frac{2{n}^{2}+1}{4n+1}$ | ||
| C. | ($\sqrt{n+1}$-$\sqrt{n}$)$\sqrt{n}$ | D. | $\frac{1+4+7+…+(3n-2)}{2{n}^{2}}$ |
分析 对选项一一加以判断,运用数列的极限和分子有理化、等差数列的求和公式,即可得到C正确.
解答 解:对于A,$\underset{lim}{n→∞}$$\frac{n-2}{2{n}^{2}+2n}$=$\underset{lim}{n→∞}$$\frac{\frac{n-2}{{n}^{2}}}{2+\frac{2}{n}}$=$\frac{0}{1+0}$=0;
对于B,$\underset{lim}{n→∞}$$\frac{2{n}^{2}+1}{4n+1}$不存在;
对于C,$\underset{lim}{n→∞}$($\sqrt{n+1}$-$\sqrt{n}$)$\sqrt{n}$=$\underset{lim}{n→∞}$$\frac{\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}$=$\underset{lim}{n→∞}$$\frac{1}{\sqrt{1+\frac{1}{n}}+1}$=$\frac{1}{1+1}$=$\frac{1}{2}$;
对于D,$\underset{lim}{n→∞}$$\frac{1+4+7+…+(3n-2)}{2{n}^{2}}$=$\underset{lim}{n→∞}$$\frac{(3n-1)n}{4{n}^{2}}$=$\underset{lim}{n→∞}$$\frac{3-\frac{1}{n}}{4}$=$\frac{3}{4}$.
故选:C.
点评 本题考查数列的极限的求法,同时考查等差数列的求和公式的运用,常见数列的极限,属于中档题.
练习册系列答案
相关题目
10.若x,y满足$\left\{\begin{array}{l}{x≤2}\\{x-y+1≥0}\\{x+y-2≥0}\end{array}\right.$.则z=2x-y的最小值为( )
| A. | 4 | B. | 1 | C. | 0 | D. | -$\frac{1}{2}$ |
11.已知一组数据按从小到大的顺序排列为:14,19,x,23,27,其中中位数是22,则x的值为( )
| A. | 24 | B. | 23 | C. | 22 | D. | 21 |
5.为了解大学生观看某电视节目是否与性别有关,一所大学心理学教师从该校学生中随机抽取了50人进行问卷调查,得到了如下的列联表,若该教师采用分层抽样的方法从50份问卷调查中继续抽查了10份进行重点分析,知道其中喜欢看该节目的有6人.
(Ⅰ)请将上面的列联表补充完整;
(Ⅱ)是否有99.5%的把握认为喜欢看该节目节目与性别有关?说明你的理由;
(Ⅲ)已知喜欢看该节目的10位男生中,5位喜欢看新闻,3位喜欢看动画片,2位喜欢看韩剧,现从喜欢看新闻、动画片和韩剧的男生中各选出1名进行其他方面的调查,求喜欢看动画片的男生甲和喜欢看韩剧的男生乙不全被选中的概率.
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d;
①当K2≥3.841时有95%的把握认为ξ、η有关联;
②当K2≥6.635时有99%的把握认为ξ、η有关联.
| 喜欢看该节目 | 不喜欢看该节目 | 合计 | |
| 女生 | 5 | ||
| 男生 | 10 | ||
| 合计 | 50 |
(Ⅱ)是否有99.5%的把握认为喜欢看该节目节目与性别有关?说明你的理由;
(Ⅲ)已知喜欢看该节目的10位男生中,5位喜欢看新闻,3位喜欢看动画片,2位喜欢看韩剧,现从喜欢看新闻、动画片和韩剧的男生中各选出1名进行其他方面的调查,求喜欢看动画片的男生甲和喜欢看韩剧的男生乙不全被选中的概率.
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d;
①当K2≥3.841时有95%的把握认为ξ、η有关联;
②当K2≥6.635时有99%的把握认为ξ、η有关联.
12.已知函数y=f(x)在x=x0处可导,则$\underset{lim}{h→∞}\frac{f({x}_{0}+h)-f({x}_{0}-h)}{h}$等于( )
| A. | f′(x0) | B. | 2f′(x0) | C. | -2f′(x0) | D. | 0 |