ÌâÄ¿ÄÚÈÝ
8£®º¯Êýf£¨x£©=3sin£¨2x-$\frac{¦Ð}{3}$£©£¨x¡ÊR£©µÄͼÏóΪC£¬ÈçϽáÂÛÖÐÕýÈ·µÄÊǢ٢ڢۢܢݣ¨Ð´³öËùÔÚÕýÈ·½áÂ۵ıàºÅ£©£®¢ÙͼÏóC¹ØÓÚÖ±Ïßx=$\frac{11}{12}$¦Ð¶Ô³Æ£»
¢ÚͼÏóC¹ØÓڵ㣨$\frac{2¦Ð}{3}$£¬0£©¶Ô³Æ£»
¢Ûº¯Êýf£¨x£©ÔÚÇø¼ä£¨-$\frac{¦Ð}{12}$£¬$\frac{5¦Ð}{12}$£©ÄÚÊÇÔöº¯Êý£»
¢ÜÓÉf£¨x1£©=f£¨x2£©=0¿ÉµÃx1-x2±ØÊÇ$\frac{¦Ð}{4}$µÄÕûÊý±¶£»
¢Ýº¯Êýy=f£¨x£©µÄ±í´ïʽ¿ÉÒÔ¸ÄдΪf£¨x£©=3cos£¨2x+$\frac{7¦Ð}{6}$£©£»
¢Þ½«Í¼ÏóCÏò×óÆ½ÒÆ$\frac{¦Ð}{3}$¸öµ¥Î»³¤¶ÈºóµÃµ½µÄº¯ÊýÎªÆæº¯Êý£®
·ÖÎö ÏȽ«Èý½Çº¯Êý½øÐл¯¼ò£¬È»ºó·Ö±ðÀûÓÃÈý½Çº¯ÊýµÄͼÐκÍÐÔÖÊÈ¥Åжϣ®¢Ù½«$x=\frac{11¦Ð}{12}$´úÈ룬±È½ÏÊDz»ÊÇ×îÖµ£®¢Ú½«µã$£¨\frac{2¦Ð}{3}£¬0£©$´úÈ뺯Êý£¬Âú×㼴Ϊ¶Ô³ÆÖÐÐÄ£®¢ÛÀûÓú¯ÊýµÄµ¥µ÷ÐÔÈ¥ÅжÏÇø¼ä£®¢ÜÇó³öº¯ÊýµÄÖÜÆÚ½øÐÐÅжϣ¬¢Ý¸ù¾ÝÈý½Çº¯ÊýµÄÓÕµ¼¹«Ê½½øÐÐת»¯Åжϣ¬¢Þͨ¹ýÆ½ÒÆ½áºÏÈý½Çº¯ÊýµÄÆæÅ¼ÐÔ½øÐÐÅжϣ®
½â´ð ½â£º¢Ùµ±x=$\frac{11}{12}$¦Ðʱ£¬f£¨$\frac{11}{12}$¦Ð£©=3sin£¨2¡Á$\frac{11}{12}$¦Ð-$\frac{¦Ð}{3}$£©=3sin$\frac{3¦Ð}{2}$=-3Ϊ×îСֵ£¬ËùÒÔ$x=\frac{11¦Ð}{12}$ÊǺ¯ÊýµÄÒ»Ìõ¶Ô³ÆÖᣬËùÒÔ¢ÙÕýÈ·£®
¢Úµ±$x=\frac{2¦Ð}{3}$ʱ£¬f£¨$\frac{2¦Ð}{3}$£©=3sin£¨2¡Á$\frac{2¦Ð}{3}$-$\frac{¦Ð}{3}$£©=3sin¦Ð=0£¬ËùÒÔͼÏóC¹ØÓÚµã$£¨\frac{2¦Ð}{3}£¬0£©$¶Ô³Æ£¬ËùÒÔ¢ÚÕýÈ·£®
¢Ûµ±$-\frac{¦Ð}{12}£¼x£¼\frac{5¦Ð}{12}$ʱ£¬$-\frac{¦Ð}{6}£¼2x£¼\frac{5¦Ð}{6}£¬-\frac{¦Ð}{2}£¼2x-\frac{¦Ð}{3}£¼\frac{¦Ð}{2}$£¬´Ëʱº¯Êýµ¥µ÷µÝÔö£¬ËùÒÔ¢ÛÕýÈ·£®
¢Üº¯ÊýµÄÖÜÆÚT=$\frac{2¦Ð}{2}=¦Ð$£¬ÔòÓÉf£¨x1£©=f£¨x2£©=0¿ÉµÃx1-x2=k$•\frac{T}{2}$=$\frac{k¦Ð}{2}$£¬¼´x1-x2±ØÊÇ$\frac{¦Ð}{2}$µÄÕûÊý±¶£»¹Ê¢ÜÕýÈ·£¬
¢Ýf£¨x£©=3sin£¨2x-$\frac{¦Ð}{3}$£©=3cos[$\frac{¦Ð}{2}$-£¨2x-$\frac{¦Ð}{3}$£©]=3cos£¨$\frac{5}{6}$¦Ð-2x£©=3cos£¨2x-$\frac{5}{6}$¦Ð£©=3cos£¨2x+2¦Ð-$\frac{5}{6}$¦Ð£©=3cos£¨2x+$\frac{7¦Ð}{6}$£©£¬¹Ê¢ÝÕýÈ·£¬
¢ÞÓÉy=3sin2xµÄͼÏóÏò×óÆ½ÒÆ$\frac{¦Ð}{3}$¸öµ¥Î»³¤¶È£¬µÃµ½y=3sin[2£¨x+$\frac{¦Ð}{3}$£©-$\frac{¦Ð}{3}$]=3sin£¨2x+$\frac{¦Ð}{3}$£©£¬´Ëʱº¯ÊýΪ·ÇÆæ·Çżº¯Êý£¬¹Ê¢Þ´íÎó£¬
ËùÒÔÕýÈ·µÄÊǢ٢ڢۢܢÝ
¹Ê´ð°¸Îª£º¢Ù¢Ú¢Û¢Ü¢Ý£®
µãÆÀ ±¾Ì⿼²éÈý½Çº¯ÊýµÄͼÏóºÍÐÔÖÊ£¬ÏÈÀûÓø¨Öú½Ç¹«Ê½½«Èý½Çº¯Êý½øÐл¯¼ò£¬È»ºóÔÚÑо¿ÏàÓ¦µÄÐÔÖÊ£®×ۺϿ¼²éÈý½Çº¯ÊýµÄÐÔÖÊ£®
| A£® | $\frac{28}{3}$¦Ð | B£® | $\frac{20}{3}$¦Ð | C£® | 4¦Ð | D£® | $\frac{8}{3}$¦Ð |
| A£® | 12¦Ð | B£® | 4$\sqrt{3}$¦Ð | C£® | 48¦Ð | D£® | 32$\sqrt{3}¦Ð$ |
| A£® | $\frac{n-2}{2n£¨n+1£©}$ | B£® | $\frac{2{n}^{2}+1}{4n+1}$ | ||
| C£® | £¨$\sqrt{n+1}$-$\sqrt{n}$£©$\sqrt{n}$ | D£® | $\frac{1+4+7+¡+£¨3n-2£©}{2{n}^{2}}$ |
| A£® | -$\frac{4}{3}$ | B£® | -$\frac{3}{4}$ | C£® | $\frac{3}{4}$ | D£® | $\frac{4}{3}$ |