题目内容

10.在△ABC中,A、B、C所对的边分别是a、b、c,且满足下列关系:sin2B≤sin2A+sin2C-sinAsinC.
(1)求证:0<B$≤\frac{π}{3}$.
(2)求函数y=$\frac{1+sin2B}{sinB+cosB}$的值域.

分析 (1)由正弦定理和不等式的性质可得cosB≥$\frac{1}{2}$,可得0<B$≤\frac{π}{3}$;
(2)由三角函数公式化简可得y=$\sqrt{2}$sin(B+$\frac{π}{4}$),由B的范围易得函数的值域.

解答 解:(1)∵△ABC中sin2B≤sin2A+sin2C-sinAsinC,
∴由正弦定理可得b2≤a2+c2-ac,即a2+c2-b2≥ac,
∴cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$≥$\frac{1}{2}$,∴0<B$≤\frac{π}{3}$;
(2)y=$\frac{1+sin2B}{sinB+cosB}$=$\frac{si{n}^{2}B+co{s}^{2}B+2sinBcosB}{sinB+cosB}$
=$\frac{(sinB+cosB)^{2}}{sinB+cosB}$=sinB+cosB=$\sqrt{2}$sin(B+$\frac{π}{4}$),
∵0<B$≤\frac{π}{3}$,∴$\frac{π}{4}$<B+$\frac{π}{4}$≤$\frac{7π}{12}$,
∴$\frac{\sqrt{2}}{2}$<sin(B+$\frac{π}{4}$)≤1,
∴1<$\sqrt{2}$sin(B+$\frac{π}{4}$)≤$\sqrt{2}$,
∴函数的值域为(1,$\sqrt{2}$]

点评 本题考查正余弦定理解三角形,涉及三角函数的值域,属中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网