题目内容
3.(题类A)双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),过焦点F1的弦AB长为m(A,B在同一支上),另一个焦点为F2,则△ABF2的周长为( )| A. | 4a-2m | B. | 4a | C. | 4a+m | D. | 4a+2m |
分析 先根据双曲线的定义可知,|AF2|-|AF1|=2a,|BF2|-|BF1|=2a,两式相加求得|AF2|+|BF2|=4a+m,进而根据代入|AF2|+|BF2|+|AF1|+|BF1|求得答案.
解答 解:由双曲线的定义可知,|AF2|-|AF1|=2a,|BF2|-|BF1|=2a,
∴△ABF2的周长为|AF2|+|BF2|+|AF1|+|BF1|=4a+|AF1|+|BF1|+|AF1|+|BF1|=4a+2m,
故选:D.
点评 本题主要考查了双曲线的应用.解题的关键是灵活利用了双曲线的定义.
练习册系列答案
相关题目
19.下列函数在区间(0,+∞)上为增函数的是( )
| A. | y=cosx | B. | y=2x | C. | y=2-x2 | D. | y=${log}_{\frac{1}{3}}$x |
12.已知$z=\frac{2-i}{1+i}-{i^{2016}}$(i是虚数单位),则|z|=( )
| A. | 2 | B. | 4 | C. | $\frac{{\sqrt{10}}}{2}$ | D. | $\frac{5}{2}$ |
13.下列命题中正确的是( )
| A. | x=2是x2-4x+4=0的必要不充分条件 | |
| B. | 在△ABC中,三边a,b,c所对的角分别为A,B,C,若acosA=bcosB,则该三角形△ABC为等腰三角形 | |
| C. | 命题“若x2<4,则-2<x<2”的逆否命题为“若x2≥4,则x≥2或x≤-2” | |
| D. | 若p∧(¬q)为假,p∨(¬q)为真,则p,q同真或同假 |