题目内容
17.椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{8}$=1的焦点为F1、F2,点P在椭圆上,若|PF1|=3,则△PF1F2的面积为( )| A. | $\sqrt{2}$ | B. | 2$\sqrt{2}$ | C. | 4$\sqrt{2}$ | D. | $\frac{9}{2}$ |
分析 由已知得|PF2|=6-3=3,|$\overrightarrow{{F}_{1}{F}_{2}}$|=2,由此能求出△PF1F2的面积.
解答 解:∵椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{8}$=1的焦点为F1、F2,点P在椭圆上,|PF1|=3,
∴F1(-1,0),F2(1,0),
|PF2|=6-3=3,|$\overrightarrow{{F}_{1}{F}_{2}}$|=2,
∴△PF1F2的面积为S=$\frac{1}{2}×2×\sqrt{9-1}$=2$\sqrt{2}$.
故选:B.
点评 本题考查三角形的面积的求法,是基础题,解题时要认真审题,注意椭圆性质的合理运用.
练习册系列答案
相关题目
7.在△ABC中,a,b,c分别是角A,B,C的对边,$B=\frac{π}{3}$,且sinA:sinC=3:1,则b:c的值为( )
| A. | $\sqrt{7}$ | B. | 2 | C. | $\sqrt{3}$ | D. | 7 |
8.口袋中有四个小球,其中一个黑球三个白球,从中随机取出两个球,则取到的两个球同色的概率为( )
| A. | $\frac{1}{6}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{4}$ | D. | $\frac{3}{4}$ |
5.已知F1,F2分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,点A(1,$\frac{\sqrt{3}}{2}$)在椭圆C上,|AF1|+|AF2|=4,则椭圆C的离心率是( )
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{5}}{4}$ | C. | $\frac{2}{3}$ | D. | $\frac{\sqrt{3}}{2}$ |
2.若y=sin$\frac{2π}{3}$,则y′=( )
| A. | -$\frac{\sqrt{3}}{2}$ | B. | 0 | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
6.在△ABC中,B=60°,C=45°,BC=8,D为BC上一点,AD=4(3$-\sqrt{3}$),$\overrightarrow{BD}$=$λ\overrightarrow{BC}$,则λ的值为( )
| A. | $\frac{\sqrt{6}-\sqrt{2}}{2}$ | B. | $\frac{\sqrt{6}+\sqrt{2}}{4}$ | C. | $\frac{\sqrt{3}-1}{2}$ | D. | $\frac{2-\sqrt{3}}{2}$ |