题目内容
1.设集合A={x|x<2},B={y|y=2x-1},则A∩B=( )| A. | [-1,2) | B. | (0,2) | C. | (-∞,2) | D. | (-1,2) |
分析 求函数的值域得集合B,根据交集的定义写出A∩B.
解答 解:集合A={x|x<2}=(-∞,2)
B={y|y=2x-1}={y|y>-1}=(-1,+∞)
则A∩B=(-1,2).
故选:D.
点评 本题考查了集合的定义与运算问题,是基础题.
练习册系列答案
相关题目
11.已知数列{an}为等差数列,若a8=4,则数列{an}的前15项和S15=( )
| A. | 12 | B. | 32 | C. | 60 | D. | 120 |
12.在△ABC中,AC=$\sqrt{2}$,AB=2,∠BAC=135°,D是BC的中点,M是AD上一点,且$\overrightarrow{AM}$=2$\overrightarrow{MD}$,则$\overrightarrow{MB}$•$\overrightarrow{MC}$的值是( )
| A. | -$\frac{22}{9}$ | B. | -$\frac{2}{9}$ | C. | -$\frac{7}{3}$ | D. | -$\frac{5}{3}$ |
9.在平面直角坐标系xOy中,圆O的方程为x2+y2=4,直线l的方程为y=k(x+2),若在圆O上至少存在三点到直线l的距离为1,则实数k的取值范围是( )
| A. | $[{0,\frac{{\sqrt{3}}}{3}}]$ | B. | $[{-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}}]$ | C. | $[{-\frac{1}{2},\frac{1}{2}}]$ | D. | $[{0,\frac{1}{2}}]$ |
16.定义在R上的函数f(x)=2|x-m|-1为偶函数,记a=f(log0.53),b=f(log25),c=f(2m),则( )
| A. | a<b<c | B. | a<c<b | C. | c<a<b | D. | c<b<a |
6.已知函数f(x)=2cos(ωx+$\frac{3π}{2}$)(ω>0),若存在m∈[$-\frac{2π}{3}$,0),n∈(0,$\frac{π}{4}$],使得f(m)-f(n)=0.则实数ω的取值范围为( )
| A. | ($\frac{5}{2}$,+∞) | B. | ($\frac{3}{4}$,+∞) | C. | (2,+∞) | D. | ($\frac{3}{2}$,+∞) |
10.已知函数f(x)=sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的最小正周期为π,将该函数的图象向左平移$\frac{π}{6}$个单位后,得到的图象对应的函数为奇函数,则f(x)的图象( )
| A. | 关于点($\frac{π}{12}$,0)对称 | B. | 关于直线x=$\frac{5π}{12}$对称 | ||
| C. | 关于点($\frac{5π}{12}$,0)对称 | D. | 关于直线x=$\frac{π}{12}$对称 |