题目内容
7.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为( )| A. | $\frac{5}{6}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{6}$ | D. | $\frac{3}{4}$ |
分析 这2只球颜色不同的对立事件是2只球都是黄球,由此利用对立事件概率性质能求出这2只球颜色不同的概率.
解答 解:这2只球颜色不同的对立事件是2只球都是黄球,
摸出的2只球都是黄球的概率:
p1=$\frac{{C}_{2}^{2}}{{C}_{4}^{2}}$=$\frac{1}{6}$,
∴由对立事件概率性质得这2只球颜色不同的概率为:
p=1-p1=1-$\frac{1}{6}$=$\frac{5}{6}$.
故选:A.
点评 本题考查概率的求法,是基础题,解题时要认真审题,注意对立事件概率计算公式的合理运用.
练习册系列答案
相关题目
17.设向量$\overrightarrow a=(cosα,sinα),\overrightarrow b=(cosβ,sinβ)$,其中0<α<β<π,若$|{2\overrightarrow a-\overrightarrow b}|=|{\overrightarrow a+2\overrightarrow b}|$,则β-α=( )
| A. | $-\frac{π}{4}$ | B. | $\frac{π}{4}$ | C. | $-\frac{π}{2}$ | D. | $\frac{π}{2}$ |
18.已知定义域为R的函数f(x)在区间(4,+∞)上为增函数,且函数y=f(x+4)为偶函数,则( )
| A. | f(3)<f(6) | B. | f(3)<f(5) | C. | f(2)<f(3) | D. | f(2)<f(5) |
2.
一项实验中获得的一组关于变量y,t之间的数据整理后得到如图所示的散点图.下列函数中可以
近视刻画y与t之间关系的最佳选择是( )
近视刻画y与t之间关系的最佳选择是( )
| A. | y=at | B. | y=logat | C. | y=at3 | D. | y=a$\sqrt{t}$ |
12.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-4x+1,x≥0}\\{-1+lo{g}_{2}(-x),x<0}\end{array}\right.$,若函数g(x)=f(x)-a有三个不同的零点x1,x2,x3,则x1+x2+x3的取值范围是( )
| A. | (0,4) | B. | (-4,0) | C. | [0,$\frac{15}{4}$) | D. | ($\frac{1}{2}$,2) |