题目内容
已知各项都为正数的数列{an},其前n项的和为Sn,且Sn=(+)2(n≥2),若bn=+,且数列{bn}的前n项的和为Tn,则Tn=__________.
如图是一个算法流程图,则输出的k=________.
一个几何体的正(主)视图和俯视图如图所示,其中俯视图是边长为2的正三角形,且圆与三角形内切,则侧(左)视图的面积为( )
A.6+π B.4+π
C.6+4π D.4+4π
如果一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥.已知一个正六棱锥的各个顶点都在半径为3的球面上,则该正六棱锥的体积的最大值为______.
已知等比数列{an}的各项均为不等于1的正数,数列{bn}满足bn=lg an,b3=18,b6=12,则数列{bn}的前n项和的最大值等于( )
A.126 B.130
C.132 D.134
已知等比数列{an}满足an+1+an=9·2n-1,n∈N*.
(1)求数列{an}的通项公式;
(2)设数列{an}的前n项和为Sn,若不等式Sn>kan-2对一切n∈N*恒成立,求实数k的取值范围.
函数f(x)=Asin(ωx+φ)+k的图象如图所示,则f(x)的表达式是f(x)=______
.
如图,已知⊙O和⊙M相交于A,B两点,AD为⊙M的直径,直线BD交⊙O于点C,点G为弧BD的中点,连接AG分别交⊙O,BD于点E,F,连接CE.求证:
(1)AG·EF=CE·GD;
(2)
在平面四边形ABCD中,点E,F分别是边AD,BC的中点,且AB=1,EF=,CD=.若=15,则=________.