题目内容

已知底面边长为
3
,侧棱长为6的正四棱柱的各顶点均在同一个球面上,其对角线为直径,则该球的体积为(  )
A、
256
3
π
B、7
42
π
C、
500
3
π
D、
6
π
考点:球的体积和表面积
专题:空间位置关系与距离
分析:由长方体的对角线公式,算出正四棱柱体对角线的长,从而得到球直径长,得球半径R=1,最后根据球的体积公式,可算出此球的体积.
解答: 解:∵正四棱柱的底面边长为
3
,侧棱长为6,
∴正四棱柱体对角线的长为
3+3+36
=
42

又∵正四棱柱的顶点在同一球面上,
∴正四棱柱体对角线恰好是球的一条直径,得球半径R=
42
2

根据球的体积公式,得此球的体积为V=
4
3
πR3=7
42
π

故选:B.
点评:本题给出球内接正四棱柱的底面边长和侧棱长,求该球的体积,考查了正四棱柱的性质、长方体对角线公式和球的体积公式等知识,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网