题目内容

4.如图,直四棱柱ABCD-A1B1C1D1的底面ABCD是直角梯形,其中AB⊥AD,AB=2AD=2AA1=4,CD=1.
(Ⅰ)证明:BD1⊥平面A1C1D;
(Ⅱ)求BD1与平面A1BC1所成角的正弦值.

分析 (Ⅰ)连接AD1,B1D1,证明A1D⊥BD1,A1C1⊥BD1,即可证明:BD1⊥平面A1C1D;
(Ⅱ)建立坐标系,求出平面的法向量,即可求BD1与平面A1BC1所成角的正弦值.

解答 (Ⅰ)证明:连接AD1,B1D1,则AB是平面AD1的垂线,BD1是平面AD1的斜线,AD1是BD1在平面AD1内的射影,∴A1D⊥BD1
∵Rt△C1D1A1∽Rt△B1A1D1,∴∠D1A1C1+∠A1D1B1=∠D1A1C1+∠D1C1A1=90°,∴A1C1⊥B1D1,∴A1C1⊥BD1
∵A1D∩A1C1=A1
∴BD1⊥平面A1C1D;
(Ⅱ)解:建立如图所示的坐标系,则A1(0,0,0),B(2,4,0),C1(0,1,2),D1(0,0,2),
$\overrightarrow{{A}_{1}B}$=(2,4,0),$\overrightarrow{{A}_{1}{C}_{1}}$=(0,1,2),$\overrightarrow{B{D}_{1}}$=(-2,-4,2),
设BD1与平面A1BC1所成角为θ,平面A1BC1的一个法向量为$\overrightarrow{n}$=(x,y,z),则$\left\{\begin{array}{l}{2x+4y=0}\\{y+2z=0}\end{array}\right.$,取$\overrightarrow{n}$=(4,-2,1),
则sinθ=|$\frac{2}{\sqrt{24}•\sqrt{21}}$=$\frac{\sqrt{14}}{42}$.

点评 本题考查线面垂直的证明,考查线面角,考查向量方法的运用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网