题目内容

已知函数f(x)=ax2+bx+c,满足f(1)=-
a
2
,且3a>2c>2b.
(1)求证:a>0时,
b
a
的取值范围;
(2)证明函数f(x)在区间(0,2)内至少有一个零点;
(3)设x1,x2是函数f(x)的两个零点,求|x1-x2|的取值范围.
考点:二次函数的性质,函数零点的判定定理
专题:函数的性质及应用
分析:(1)根据f(1)=0,可得a,b,c的关系,再根据3a>2c>2b,将其中的c代换成a与b表示,即可求得
b
a
的取值范围;
(2)求出f(2)的值,根据已知条件,分别对c的正负情况进行讨论即可;
(3)根据韦达定理,将|x1-x2|转化成用两个根表示,然后转化成用
b
a
表示,运用(1)的结论,即可求得|x1-x2|的取值范围.
解答: 解:(1)∵f(1)=a+b+c=-
a
2

∴3a+2b+2c=0.
又3a>2c>2b,
故3a>0,2b<0,
从而a>0,b<0,
又2c=-3a-2b及3a>2c>2b知3a>-3a-2b>2b
∵a>0,∴3>-3-
2b
a
>2
b
a

即-3<
b
a
<-
3
4

(2)根据题意有f(0)=0,f(2)=4a+2b+c=(3a+2b+2c)+a-c=a-c.
下面对c的正负情况进行讨论:
①当c>0时,∵a>0,
∴f(0)=c>0,f(1)=-
a
2
<0
所以函数f(x)在区间(0,1)内至少有一个零点;
②当c≤0时,∵a>0,
∴f(1)=-
a
2
<0,f(2)=a-c>0
所以函数f(x)在区间(1,2)内至少有一个零点;
综合①②得函数f(x)在区间(0,2)内至少有一个零点;
(3).∵x1,x2是函数f(x)的两个零点
∴x1,x2是方程ax2+bx+c=0的两根.
故x1+x2=-
b
a
,x1x2=
c
a
=
-
3a+2b
2
a
=-
3
2
-
b
a

从而|x1-x2|=
(x1+x2)2-4x1x2
=
(-
b
a
)
2
-4(-
3
2
-
b
a
)
=
(
b
a
+2)
2
+2

∵-3<
b
a
<-
3
4

2
|x1-x2|
57
4
点评:本题考查了二次函数的性质,对于二次函数要注意数形结合的应用,注意抓住二次函数的开口方向,对称轴,以及判别式的考虑;同时考查了函数的零点与方程根的关系,函数的零点等价于对应方程的根,等价于函数的图象与x轴交点的横坐标,解题时要注意根据题意合理的选择转化.属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网