题目内容
已知集合A={x|x=2k+1,k∈Z},B={x|x=4k+3,k∈Z},求∁AB.
考点:补集及其运算
专题:数系的扩充和复数
分析:由题意可得A={x|x=4k+1,或x=4k+3},B={x|x=4k+3,k∈Z},由此求得∁AB.
解答:
解:∵集合A={x|x=2k+1,k∈Z}={x|x=4k+1,或x=4k+3},B={x|x=4k+3,k∈Z},
∴∁AB={x|x=4k+1,k∈Z}.
∴∁AB={x|x=4k+1,k∈Z}.
点评:本题主要考查集合的表示法,求集合的补集,属于基础题.
练习册系列答案
相关题目