题目内容
设等比数列{an}满足:a1=
,a2+a3=
,且an>0.
(Ⅰ)求数列{an}的通项;
(Ⅱ)设bn=
,求数列{bn}的前n项和Sn.
| 1 |
| 3 |
| 4 |
| 27 |
(Ⅰ)求数列{an}的通项;
(Ⅱ)设bn=
| n |
| an |
考点:数列的求和,等比数列的通项公式
专题:等差数列与等比数列
分析:(Ⅰ)由已知条件利用等比数列通项公式求出q=
,从而得到an=(
)n.
(Ⅱ)由bn=
=n•3n,利用错位相减法能求出数列{bn}的前n项和Sn.
| 1 |
| 3 |
| 1 |
| 3 |
(Ⅱ)由bn=
| n |
| an |
解答:
解:(Ⅰ)∵等比数列{an}满足:a1=
,a2+a3=
,且an>0.
∴
q+
q2=
,且q>0,
解得q=
,
∴an=
×(
)n-1=(
)n.
(Ⅱ)∵bn=
=n•3n,
∴Sn=1×3+2×32+3×33+…+n×3n,①
3Sn=1×32+2×33+3×34+…+n×3n+1,②
①-②,得:-2Sn=3+32+33+…+3n-n•3n+1
=
-n•3n+1,
∴Sn=
+(
-
)•3n+1.
| 1 |
| 3 |
| 4 |
| 27 |
∴
| 1 |
| 3 |
| 1 |
| 3 |
| 4 |
| 27 |
解得q=
| 1 |
| 3 |
∴an=
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
(Ⅱ)∵bn=
| n |
| an |
∴Sn=1×3+2×32+3×33+…+n×3n,①
3Sn=1×32+2×33+3×34+…+n×3n+1,②
①-②,得:-2Sn=3+32+33+…+3n-n•3n+1
=
| 3×(1-3n) |
| 1-3 |
∴Sn=
| 3 |
| 4 |
| n |
| 2 |
| 1 |
| 4 |
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目
数列{
}的前n项和为( )
| 2 |
| 4n2-1 |
A、
| ||
B、
| ||
C、
| ||
D、
|
函数y=ax-1+2(a>0且a≠1)图象一定过点( )
| A、(1,1) |
| B、(1,3) |
| C、(2,0) |
| D、(4,0) |
椭圆
+
=1的焦点坐标为( )
| y2 |
| 13 |
| x2 |
| 4 |
| A、(±2,0) |
| B、(±3,0) |
| C、(0,±2) |
| D、(0,±3) |