题目内容
数列{
}(n∈N*)的前n项的和Sn= .
| 1 |
| 4n2-1 |
考点:数列的求和
专题:等差数列与等比数列
分析:an=
=
(
-
),利用“裂项求和”即可得出.
| 1 |
| 4n2-1 |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
解答:
解:an=
=
(
-
),
∴Sn=
[(1-
)+(
-
)+…+(
-
)]
=
(1-
)
=
.
故答案为:
.
| 1 |
| 4n2-1 |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴Sn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
=
| 1 |
| 2 |
| 1 |
| 2n+1 |
=
| n |
| 2n+1 |
故答案为:
| n |
| 2n+1 |
点评:本题考查了“裂项求和”求数列的前n项和,属于基础题.
练习册系列答案
相关题目
计算
(1-cosx)dx=( )
| ∫ |
-
|
| A、π+2 | B、π-2 | C、π | D、-2 |
抛物线 x2=y的准线方程是( )
| A、4x+1=0 |
| B、4y+1=0 |
| C、2x+1=0 |
| D、2y+1=0 |