题目内容
已知函数f(x)=ex,对于曲线y=f(x)上横坐标城等差数列的三个点A、B、C,给出以下四个判断:①△ABC一定是钝角三角形;②△ABC可能是直角三角形;③△ABC可能是等腰三角形;④△ABC不可能是等腰三角形.其中正确的判断是( )
| A、①③ | B、①④ | C、②③ | D、②④ |
考点:指数函数的图像与性质
专题:函数的性质及应用
分析:由于函数f(x)=ex,对于曲线y=f(x)上横坐标成等差数列的三个点A,B,C,由函数的定义及函数单调性进行判断即可得出正确选项,对于①正确,由函数的图象可以得出,角ABC是钝角,②亦可由此判断出;③④可由变化率判断出.
解答:
解:由于函数f(x)=ex,对于曲线y=f(x)上横坐标成等差数列的三个点A,B,C,且横坐标依次增大
由于此函数是一个单调递增的函数,故由A到B的变化率要小于由B到C的变化率.(可以采用向量BA乘以向量BC小于零的解法)
可得出∠ABC一定是钝角故①对,②错.
由于由A到B的变化率要小于由B到C的变化率,由两点间距离公式可以得出AB<BC,
故三角形不可能是等腰三角形,
由此得出③不对,④对.
故选:B.
由于此函数是一个单调递增的函数,故由A到B的变化率要小于由B到C的变化率.(可以采用向量BA乘以向量BC小于零的解法)
可得出∠ABC一定是钝角故①对,②错.
由于由A到B的变化率要小于由B到C的变化率,由两点间距离公式可以得出AB<BC,
故三角形不可能是等腰三角形,
由此得出③不对,④对.
故选:B.
点评:本题考查了数列与函数的综合,求解本题的关键是反函数的性质及其变化规律研究清楚,由函数的图形结合等差数列的性质得出答案.
练习册系列答案
相关题目
不等式x-
>0成立的充分不必要条件是( )
| 1 |
| x |
| A、x>-1 |
| B、x>l |
| C、-l<x<0或x>l |
| D、x<-1或0<x<l |
在△ABC中,a,b,c分别为内角A,B,C的对边,已知a=5
,c=10,A=30°,则角B等于( )
| 2 |
| A、105° | B、60° |
| C、15° | D、105°或15° |