题目内容
14.执行如图所示的程序框图,若输入的x值为2,则输出v的值为( )| A. | 31 | B. | 32 | C. | 63 | D. | 64 |
分析 模拟执行程序,依次写出每次循环得到的v,n的值,当n=6时不满足条件n≤5,退出循环,输出v的值为63即可得解.
解答 解:模拟执行程序,可得
x=2,n=1,v=1
满足条件n≤5,执行循环体,v=3,n=2
满足条件n≤5,执行循环体,v=7,n=3
满足条件n≤5,执行循环体,v=15,n=4
满足条件n≤5,执行循环体,v=31,n=5
满足条件n≤5,执行循环体,v=63,n=6
不满足条件n≤5,退出循环,输出v的值为63.
故选:C.
点评 本题考查的知识点是程序框图,在写程序的运行结果时,我们常使用模拟循环的变法,但程序的循环体中变量比较多时,要用列举法对数据进行管理,属于基础题.
练习册系列答案
相关题目
4.当1<m<$\frac{3}{2}$时,复数(3+i)-m(2+i)在复平面内对应的点位于( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
2.某空调专卖店试销A、B、C三种新型空调,销售情况如表所示:
(1)求A型空调前三周的平均周销售量;
(2)根据C型空调前三周的销售情况,预估C型空调五周的平均周销售量为10台,当C型空调周销售量的方差最小时,求C4,C5的值;
(注:方差s2=$\frac{1}{n}$[x1-$\overline{x}$)2+(x${\;}_{2}-\overline{x}$)2+…+(xn-$\overline{x}$)2],其中$\overline{x}$为x1,x2,…,xn的平均数)
(3)为跟踪调查空调的使用情况,根据销售记录,从第二周和第三周售出的空调中分别随机抽取一台,求抽取的两台空调中A型空调台数X的分布列及数学期望.
| 第一周 | 第二周 | 第三周 | 第四周 | 第五周 | |
| A型数量(台) | 11 | 10 | 15 | A4 | A5 |
| B型数量(台) | 10 | 12 | 13 | B4 | B5 |
| C型数量(台) | 15 | 8 | 12 | C4 | C5 |
(2)根据C型空调前三周的销售情况,预估C型空调五周的平均周销售量为10台,当C型空调周销售量的方差最小时,求C4,C5的值;
(注:方差s2=$\frac{1}{n}$[x1-$\overline{x}$)2+(x${\;}_{2}-\overline{x}$)2+…+(xn-$\overline{x}$)2],其中$\overline{x}$为x1,x2,…,xn的平均数)
(3)为跟踪调查空调的使用情况,根据销售记录,从第二周和第三周售出的空调中分别随机抽取一台,求抽取的两台空调中A型空调台数X的分布列及数学期望.
9.
如图,在三棱柱ABC-A1B1C1中,底面为正三角形,侧棱垂直底面,AB=4,AA1=6,若E,F分别是棱BB1,CC1上的点,且BE=B1E,C1F=$\frac{1}{3}$CC1,则异面直线A1E与AF所成角的余弦值为( )
| A. | $\frac{\sqrt{3}}{6}$ | B. | $\frac{\sqrt{2}}{6}$ | C. | $\frac{\sqrt{3}}{10}$ | D. | $\frac{\sqrt{2}}{10}$ |
3.已知命题:p“?x0∈R,x02+2ax0+a≤0”为假命题,则实数a的取值范围是( )
| A. | (0,1) | B. | [0,1] | C. | (1,2) | D. | (-∞,0)∪(1,+∞) |