题目内容

在平面直角坐标系中,已知
a
=(2mx,y-1),
b
=(2x,y+1)
,其中m∈R,
a
b
,动点M(x,y)的轨迹为C.
(1)求轨迹C的方程,并说明该轨迹方程所表示曲线的形状;
(2)当m=
1
8
时,设过定点P(0,2)的直线l与轨迹C交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.
考点:直线与圆锥曲线的综合问题,轨迹方程
专题:综合题,圆锥曲线的定义、性质与方程
分析:(1)利用
a
b
a
=(2mx,y-1),
b
=(2x,y+1)
,可得
a
b
=4mx2+y2-1=0
,即4mx2+y2=1,分类讨论,可求轨迹方程所表示曲线的形状;
(2)设出直线方程,代入椭圆方程,利用韦达定理,及∠AOB为锐角,建立不等式,即可求得直线l的斜率k的取值范围.
解答: 解:(1)因为
a
b
a
=(2mx,y-1),
b
=(2x,y+1)

所以
a
b
=4mx2+y2-1=0
,即4mx2+y2=1..(2分)
当m=0时,方程表示两直线,方程为y=±1;
m=
1
4
时,方程表示的是圆
当m>0且m≠
1
4
时,方程表示的是椭圆;
当m<0时,方程表示的是双曲线.…..(6分)
(2)当m=
1
8
时,轨迹C的方程为
x2
2
+y2=1

显然直线l的斜率是存在的,可设直线l:y=kx+2,A(x1,y2),B(x2,y2),…..(7分)
联立
y=kx+2
x2
2
+y2=1
,消去y,整理得:(2k2+1)x2+8kx+6=0
x1+x2=-
8k
2k2+1
x1x2=
6
2k2+1
…..(9分)
由△=(8k)2-4(2k2+1)×6>0,即2k2-3>0得:k<-
6
2
k>
6
2
①…..(10分)
y1y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4=
6k2
2k2+1
-
16k2
2k2+1
+4=
4-2k2
2k2+1
…..(11分)
∵∠AOB为锐角,
∴cos∠AOB>0,
OA
OB
>0,
OA
OB
=x1x2+y1y2=
6
2k2+1
+
4-2k2
2k2+1
=
10-2k2
2k2+1
>0

即k2-5<0,
-
5
<k<
5
…..(13分)
故由①、②得-
5
<k<-
6
2
6
2
<k<
5
…..(14分)
点评:本题主要考查直线、椭圆、平面向量的数量积等基础知识,以及综合应用数学知识解决问题及推理计算能力.本题为中档题,需要熟练运用设而不求韦达定理.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网