ÌâÄ¿ÄÚÈÝ

17£®°ÍÎ÷ÊÀ½ç±­×ãÇòÈüÕýÔÚÈç»ðÈçݱ½øÐУ®Ä³ÈËΪÁËÁ˽âÎÒУѧÉú¡°Í¨¹ýµçÊÓÊÕ¿´ÊÀ½ç±­¡±ÊÇ·ñÓëÐÔ±ðÓйأ¬´ÓȫУѧÉúÖÐËæ»ú³éÈ¡30ÃûѧÉú½øÐÐÁËÎʾíµ÷²é£¬µÃµ½ÁËÈçÏÂÁÐÁª±í£º
ÄÐÉúÅ®ÉúºÏ¼Æ
ÊÕ¿´10
²»ÊÕ¿´8
ºÏ¼Æ30
ÒÑÖªÔÚÕâ30ÃûͬѧÖÐËæ»ú³éÈ¡1ÈË£¬³éµ½¡°Í¨¹ýµçÊÓÊÕ¿´ÊÀ½ç±­¡±µÄѧÉúµÄ¸ÅÂÊÊÇ$\frac{8}{15}$£®
£¨I£©Ç뽫ÉÏÃæµÄÁÐÁª±í²¹³äÍêÕû£¬²¢¾Ý´Ë×ÊÁÏ·ÖÎöÔÚ·¸´íÎó¸ÅÂʲ»³¬¹ý0.01µÄǰÌáÏ¡°Í¨¹ýµçÊÓÊÕ¿´ÊÀ½ç±­¡±ÓëÐÔ±ðÊÇ·ñÓйأ¿
£¨II£©Èô´ÓÕâ30ÃûͬѧÖеÄÄÐͬѧÖÐËæ»ú³éÈ¡2È˲μÓÒ»»î¶¯£¬¼Ç¡°Í¨¹ýµçÊÓÊÕ¿´ÊÀ½ç±­¡±µÄÈËÊýΪX£¬ÇóXµÄ·Ö²¼Áк;ùÖµ£®
£¨²Î¿¼¹«Ê½£ºK2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨c+a£©£¨b+d£©}$£¬n=a+b+c+d£©
P£¨K2£¾k0£©  0.1000.0500.010
k02.7063.8416.635

·ÖÎö £¨I£©¸ù¾ÝÌâÒ⣬²¹³äÍêÕûÁÐÁª±í£¬¼ÆËãK2µÄÖµ£¬¼´¿ÉµÃ³ö½áÂÛ£»
£¨¢ò£©ÓÉXµÄ¿ÉÄÜȡֵ¼ÆËã¶ÔÓ¦µÄ¸ÅÂÊ£¬Áгö·Ö²¼ÁУ¬¼ÆËã¾ùÖµ¼´¿É£®

½â´ð ½â£º£¨I£©¸ù¾ÝÌâÒ⣬°ÑÁÐÁª±í²¹³äÍêÕûÈçÏ£¬

ÄÐÉúÅ®ÉúºÏ¼Æ
ÊÕ¿´10616
²»ÊÕ¿´6814
ºÏ¼Æ161430
ÓɱíÖÐÊý¾Ý¼ÆË㣺K2=$\frac{30{¡Á£¨10¡Á8-6¡Á6£©}^{2}}{16¡Á14¡Á16¡Á14}$¡Ö1.158£¼3.841£¬
ËùÒÔûÓгä×ãµÄÀíÓÉÈÏΪ¡°Í¨¹ýµçÊÓÊÕ¿´ÊÀ½ç±­¡±ÓëÐÔ±ðÓйأ»
£¨¢ò£©XµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£»
ÔòP£¨X=0£©=$\frac{{C}_{6}^{2}}{{C}_{16}^{2}}$=$\frac{1}{8}$£¬
P£¨X=1£©=$\frac{{C}_{6}^{1}{•C}_{10}^{1}}{{C}_{16}^{2}}$=$\frac{1}{2}$£¬
P£¨X=2£©=$\frac{{C}_{10}^{2}}{{C}_{16}^{2}}$=$\frac{3}{8}$£»
ËùÒÔXµÄ·Ö²¼ÁÐΪ£º
X012
P$\frac{1}{8}$$\frac{1}{2}$$\frac{3}{8}$
XµÄ¾ùֵΪ£ºEX=0¡Á$\frac{1}{8}$+1¡Á$\frac{1}{2}$+2¡Á$\frac{3}{8}$=$\frac{5}{4}$£®

µãÆÀ ±¾Ì⿼²é¶ÀÁ¢ÐÔ¼ìÑéµÄÓ¦Ó㬿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁÐºÍÆÚÍû£¬×¼È·µÄÊý¾ÝÔËËãÊǽâ¾öÎÊÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø