ÌâÄ¿ÄÚÈÝ
17£®°ÍÎ÷ÊÀ½ç±×ãÇòÈüÕýÔÚÈç»ðÈçݱ½øÐУ®Ä³ÈËΪÁËÁ˽âÎÒУѧÉú¡°Í¨¹ýµçÊÓÊÕ¿´ÊÀ½ç±¡±ÊÇ·ñÓëÐÔ±ðÓйأ¬´ÓȫУѧÉúÖÐËæ»ú³éÈ¡30ÃûѧÉú½øÐÐÁËÎʾíµ÷²é£¬µÃµ½ÁËÈçÏÂÁÐÁª±í£º| ÄÐÉú | Å®Éú | ºÏ¼Æ | |
| ÊÕ¿´ | 10 | ||
| ²»ÊÕ¿´ | 8 | ||
| ºÏ¼Æ | 30 |
£¨I£©Ç뽫ÉÏÃæµÄÁÐÁª±í²¹³äÍêÕû£¬²¢¾Ý´Ë×ÊÁÏ·ÖÎöÔÚ·¸´íÎó¸ÅÂʲ»³¬¹ý0.01µÄǰÌáÏ¡°Í¨¹ýµçÊÓÊÕ¿´ÊÀ½ç±¡±ÓëÐÔ±ðÊÇ·ñÓйأ¿
£¨II£©Èô´ÓÕâ30ÃûͬѧÖеÄÄÐͬѧÖÐËæ»ú³éÈ¡2È˲μÓÒ»»î¶¯£¬¼Ç¡°Í¨¹ýµçÊÓÊÕ¿´ÊÀ½ç±¡±µÄÈËÊýΪX£¬ÇóXµÄ·Ö²¼Áк;ùÖµ£®
£¨²Î¿¼¹«Ê½£ºK2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨c+a£©£¨b+d£©}$£¬n=a+b+c+d£©
| P£¨K2£¾k0£© | 0.100 | 0.050 | 0.010 |
| k0 | 2.706 | 3.841 | 6.635 |
·ÖÎö £¨I£©¸ù¾ÝÌâÒ⣬²¹³äÍêÕûÁÐÁª±í£¬¼ÆËãK2µÄÖµ£¬¼´¿ÉµÃ³ö½áÂÛ£»
£¨¢ò£©ÓÉXµÄ¿ÉÄÜȡֵ¼ÆËã¶ÔÓ¦µÄ¸ÅÂÊ£¬Áгö·Ö²¼ÁУ¬¼ÆËã¾ùÖµ¼´¿É£®
½â´ð ½â£º£¨I£©¸ù¾ÝÌâÒ⣬°ÑÁÐÁª±í²¹³äÍêÕûÈçÏ£¬
| ÄÐÉú | Å®Éú | ºÏ¼Æ | |
| ÊÕ¿´ | 10 | 6 | 16 |
| ²»ÊÕ¿´ | 6 | 8 | 14 |
| ºÏ¼Æ | 16 | 14 | 30 |
ËùÒÔûÓгä×ãµÄÀíÓÉÈÏΪ¡°Í¨¹ýµçÊÓÊÕ¿´ÊÀ½ç±¡±ÓëÐÔ±ðÓйأ»
£¨¢ò£©XµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£»
ÔòP£¨X=0£©=$\frac{{C}_{6}^{2}}{{C}_{16}^{2}}$=$\frac{1}{8}$£¬
P£¨X=1£©=$\frac{{C}_{6}^{1}{•C}_{10}^{1}}{{C}_{16}^{2}}$=$\frac{1}{2}$£¬
P£¨X=2£©=$\frac{{C}_{10}^{2}}{{C}_{16}^{2}}$=$\frac{3}{8}$£»
ËùÒÔXµÄ·Ö²¼ÁÐΪ£º
| X | 0 | 1 | 2 |
| P | $\frac{1}{8}$ | $\frac{1}{2}$ | $\frac{3}{8}$ |
µãÆÀ ±¾Ì⿼²é¶ÀÁ¢ÐÔ¼ìÑéµÄÓ¦Ó㬿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁÐºÍÆÚÍû£¬×¼È·µÄÊý¾ÝÔËËãÊǽâ¾öÎÊÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
8£®·½³Ì|x-1|+|y-1|=1È·¶¨µÄÇúÏßËùΧ³ÉµÄͼÐÎÃæ»ýΪ£¨¡¡¡¡£©
| A£® | 1 | B£® | 2 | C£® | 3 | D£® | 4 |
12£®ÒÑÖªº¯Êý$f£¨x£©=\frac{3-a}{{{a^x}+1}}+asinx$£¬ÄÇôÏÂÁÐÃüÌâÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | Èôa=0£¬Ôòy=f£¨x£©Óëy=3ÊÇͬһº¯Êý | |
| B£® | Èô0£¼a¡Ü1£¬Ôò$f£¨-\frac{¦Ð}{2}£©£¼f£¨2-{log_3}2£©£¼f[{£¨\frac{1}{3}£©^{{{log}_3}\frac{2}{3}}}]£¼f£¨{log_3}5£©£¼f£¨\frac{¦Ð}{2}£©$ | |
| C£® | Èôa=2£¬Ôò¶ÔÈÎÒâʹµÃf£¨m£©=0µÄʵÊým£¬¶¼ÓÐf£¨-m£©=1 | |
| D£® | Èôa£¾3£¬Ôòf£¨cos2£©£¼f£¨cos3£© |
2£®ÒÑÖªÖ±Ïßl1£ºy=-1ºÍÖ±Ïßl2£º3x-4y+19=0£¬Å×ÎïÏßx2=4yÉÏÒ»¶¯µãPµ½Ö±Ïßl1ºÍÖ±Ïßl2µÄ¾àÀëÖ®ºÍ×îСֵΪ£¨¡¡¡¡£©
| A£® | 3 | B£® | 2 | C£® | $\frac{24}{5}$ | D£® | $\frac{5}{2}$ |
9£®ÉèSn=2+24+27+210+¡+23n+10£¨n¡ÊN+£©£¬ÔòSn=£¨¡¡¡¡£©
| A£® | $\frac{2}{7}$£¨8n-1£© | B£® | $\frac{2}{7}$£¨8n+1-1£© | C£® | $\frac{2}{7}$£¨8n+3-1£© | D£® | $\frac{2}{7}$£¨8n+4-1£© |
6£®ÓÐÒ»¶ÎÑÝÒïÍÆÀí£º¡°Ö±Ï߯½ÐÐÓÚÆ½Ã棬ÔòƽÐÐÓÚÆ½ÃæÄÚËùÓÐÖ±Ïߣ»ÒÑÖªÖ±Ïßa?Æ½Ãæ¦Á£¬Ö±Ïßb¡ÎÆ½Ãæ¦Á£¬Ôòb¡Îa¡±µÄ½áÂÛÏÔÈ»ÊÇ´íÎóµÄ£¬ÕâÊÇÒòΪ£¨¡¡¡¡£©
| A£® | ´óǰÌá´íÎó | B£® | СǰÌá´íÎó | C£® | ÍÆÀíÐÎʽ´íÎó | D£® | ·ÇÒÔÉÏ´íÎó |
7£®ÒÑÖªº¯Êý$f£¨x£©=\left\{\begin{array}{l}\frac{2}{x}£¬x¡Ý2\\{£¨x-1£©^3}£¬x£¼2\end{array}\right.$£¬Èô¹ØÓÚxµÄ·½³Ìf£¨x£©+k=0ÓÐÁ½¸ö²»Í¬µÄʵ¸ù£¬ÔòʵÊýkµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
| A£® | £¨0£¬1£© | B£® | [0£¬1] | C£® | £¨-1£¬0£© | D£® | [-1£¬0] |