题目内容
8.已知如表格所示数据的回归直线方程为$\widehat{y}=3.8x+a$,则a的值为240.| x | 2 | 4 | 5 | 6 | 8 |
| y | 252 | 255 | 258 | 263 | 267 |
分析 根据回归直线过样本中心($\overline{x}$,$\overline{y}$),求出平均数代入方程计算a的值.
解答 解:根据表中数据,计算
$\overline{x}$=$\frac{1}{5}$×(2+4+5+6+8)=5,
$\overline{y}$=$\frac{1}{5}$×(252+255+258+263+267)=259,
且回归直线$\widehat{y}=3.8x+a$过样本中心($\overline{x}$,$\overline{y}$),
∴a=$\overline{y}$-3.8$\overline{x}$=259-3.8×5=240.
故答案为:240.
点评 本题考查了回归直线过样本中心点的应用问题,是基础题.
练习册系列答案
相关题目
18.某种产品的广告费用支出x与销售额y之间有如下的对应数据:
(1)画出散点图;并说明销售额y与广告费用支出x之间是正相关还是负相关?
(2)请根据上表提供的数据,求回归直线方程$\widehat{y}$=bx+a;
(3)据此估计广告费用为10时,销售收入y的值.
(参考公式:b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$).
| x | 2 | 4 | 5 | 6 | 8 |
| y | 30 | 40 | 60 | 50 | 70 |
(2)请根据上表提供的数据,求回归直线方程$\widehat{y}$=bx+a;
(3)据此估计广告费用为10时,销售收入y的值.
(参考公式:b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$).
16.已知函数f(x)=sin(wx+$\frac{π}{3}$)(w>0)的最小正周期为π,则该函数的图象关于( )对称.
| A. | 点($\frac{π}{3}$,0) | B. | 直线x=$\frac{π}{4}$ | C. | 点($\frac{π}{4}$,0) | D. | 直线x=$\frac{π}{3}$ |
4.若函数$f(x)=\left\{{\begin{array}{l}{a(x-1)+1,x<-1}\\{{a^{-x}},x≥-1}\end{array},(a>0}\right.$,且(a≠1)是R上的单调函数,则实数a的取值范围( )
| A. | (0,$\frac{1}{3}$) | B. | ($\frac{1}{3}$,1) | C. | (0,$\frac{1}{3}$] | D. | [$\frac{1}{3}$,1) |