题目内容
设等比数列{an}的前n项和为Sn,已知a1=
,且S1,2S2,3S3成等差数列.
(1)求an;
(2)设bn=
,求数列{bn}的前n项和Tn.
| 1 |
| 3 |
(1)求an;
(2)设bn=
| n |
| an |
考点:数列的求和,等比数列的性质
专题:等差数列与等比数列
分析:(1)由已知条件得4S2=S1+3S2,由此求出公比,从而能求出an=
•(
)n-1=
.
(2)由bn=
=n•3n,利用错位相减法能求出数列{bn}的前n项和Tn.
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3n |
(2)由bn=
| n |
| an |
解答:
解:(1)∵等比数列{an}的前n项和为Sn,a1=
,
且S1,2S2,3S3成等差数列,
∴4S2=S1+3S2,
若q=1,则an=a1=
,S1=
,S2=
,S3=1,
∴4S2=
≠S1+3
=
,
∴q≠1,
=a1+
,
∴4(1+q)=1+3(1+q+q2),
整理,得3q2-q=0,解得q=
,q=0(舍),
∴an=
•(
)n-1=
.
(2)∵bn=
=n•3n,
∴Tn=1•3+2•32+3•33+…+n•3n,①
3Tn=1•32+2•33+3•34+…+n•3n+1,②
①-②,得:-2Tn=3+32+33+…+3n-n•3n+1
=
-n•3n+1,
∴Tn=(
-
)•3n+1+
.
| 1 |
| 3 |
且S1,2S2,3S3成等差数列,
∴4S2=S1+3S2,
若q=1,则an=a1=
| 1 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
∴4S2=
| 8 |
| 3 |
| S | 3 |
| 10 |
| 3 |
∴q≠1,
| 4a1(1-q2) |
| 1-q |
| 3a1(1-q3) |
| 1-q |
∴4(1+q)=1+3(1+q+q2),
整理,得3q2-q=0,解得q=
| 1 |
| 3 |
∴an=
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3n |
(2)∵bn=
| n |
| an |
∴Tn=1•3+2•32+3•33+…+n•3n,①
3Tn=1•32+2•33+3•34+…+n•3n+1,②
①-②,得:-2Tn=3+32+33+…+3n-n•3n+1
=
| 3(1-3n) |
| 1-3 |
∴Tn=(
| n |
| 2 |
| 1 |
| 4 |
| 3 |
| 4 |
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目
曲线y=cosx(-
≤x≤
)与两坐标轴所围成的图形的面积为( )
| π |
| 2 |
| π |
| 2 |
| A、4 | ||
| B、2 | ||
C、
| ||
| D、3 |