题目内容

1.已知数列{an}的前n项和为Sn,且满足Sn=$\frac{1}{4}$n2+$\frac{2}{3}$n+3,数列{log3bn}{n∈N*}为等差数列,且b1=3,b3=27.
(Ⅰ)求数列{an}与{bn}的通项公式;
(II)令cn=(-1)n•$\frac{n}{2}$+3n,求数列{cn}的前2n项和T2n

分析 (Ⅰ)由Sn=$\frac{1}{4}{n}^{2}$+$\frac{2}{3}$n+3,可得a1=S1=$\frac{1}{4}+\frac{2}{3}$+3.当n≥2时,an=Sn-Sn-1.可得an.设等差数列{log3bn}的公差为d,且b1=3,b3=27.可得2d=log327-log33,解得d.可得bn
(Ⅱ)cn=(-1)n•$\frac{n}{2}$+3n,数列{cn}的前2n项和T2n=$(-\frac{1}{2}+\frac{2}{2}-\frac{3}{2}+…-\frac{2n-1}{2}+\frac{2n}{2})$+(3+32+…+3n),通过分组求和、利用求和公式即可得出.

解答 解:(Ⅰ)由Sn=$\frac{1}{4}{n}^{2}$+$\frac{2}{3}$n+3,∴a1=S1=$\frac{1}{4}+\frac{2}{3}$+3=$\frac{47}{12}$.,
当n≥2时,an=Sn-Sn-1=$\frac{1}{4}$n2+$\frac{2}{3}$n+3-$\frac{1}{4}(n-1)^{2}$-$\frac{2}{3}$(n-1)-3=$\frac{n}{2}$+$\frac{5}{12}$,
又$\frac{1}{2}+\frac{5}{12}$=$\frac{11}{12}$≠$\frac{47}{12}$,
∴an=$\left\{\begin{array}{l}{\frac{47}{12},n=1}\\{\frac{n}{2}+\frac{5}{12},n≥2}\end{array}\right.$.
设等差数列{log3bn}的公差为d,且b1=3,b3=27.
∴2d=log327-log33=3-1,解得d=1.
∴log3bn=log33+(n-1)=n,
∴bn=3n
(Ⅱ)cn=(-1)n•$\frac{n}{2}$+3n
∴数列{cn}的前2n项和T2n=(-$\frac{1}{2}$+3)+$(\frac{2}{2}+{3}^{2})$+$(-\frac{3}{2}+{3}^{3})$+…+$(-\frac{2n-1}{2}+{3}^{2n-1})$+$(\frac{2n}{2}+{3}^{2n})$
=$(-\frac{1}{2}+\frac{2}{2}-\frac{3}{2}+…-\frac{2n-1}{2}+\frac{2n}{2})$+(3+32+…+3n
=$[(-\frac{1}{2}+\frac{2}{2}+(-\frac{3}{2}+\frac{4}{2})$+…+$(-\frac{2n-1}{2}+\frac{2n}{2})]$+$\frac{3({3}^{n}-1)}{3-1}$
=$\frac{1}{2}×n$+$\frac{{3}^{n+1}}{2}$-$\frac{3}{2}$
=$\frac{1}{2}(n-3+{3}^{2n+1})$.

点评 本题考查了等差数列与等比数列的通项公式与求和公式、数列递推关系、分组求和方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网