ÌâÄ¿ÄÚÈÝ
16£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}\frac{x}{3}£¬0¡Üx¡Ü\frac{1}{2}\\ \frac{{2{x^3}}}{x+1}£¬\frac{1}{2}£¼x¡Ü1\end{array}$£¬Èôº¯Êýg£¨x£©=ax-$\frac{a}{2}$+3£¨a£¾0£©£¬Èô¶Ô?x1¡Ê[0£¬1]£¬×Ü?x2¡Ê[0£¬$\frac{1}{2}$]£¬Ê¹µÃf£¨x1£©=g£¨x2£©³ÉÁ¢£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©| A£® | £¨-¡Þ£¬6] | B£® | [6£¬+¡Þ£© | C£® | £¨-¡Þ£¬-4] | D£® | [-4£¬+¡Þ£© |
·ÖÎö º¯Êýf£¨x£©=$\left\{\begin{array}{l}\frac{x}{3}£¬0¡Üx¡Ü\frac{1}{2}\\ \frac{{2{x^3}}}{x+1}£¬\frac{1}{2}£¼x¡Ü1\end{array}$£¬µ±$0¡Üx¡Ü\frac{1}{2}$ʱ£¬f£¨x£©¡Ê$[0£¬\frac{1}{6}]$.$\frac{1}{2}£¼x¡Ü1$ʱ£¬f£¨x£©=$\frac{2{x}^{3}}{x+1}$£¬ÀûÓõ¼ÊýÑо¿º¯ÊýµÄµ¥µ÷ÐԿɵãºf£¨x£©¡Ê$£¨\frac{1}{6}£¬1]$£®¿ÉµÃ?x1¡Ê[0£¬1]£¬f£¨x1£©¡Ê[0£¬1]£®ÓÉÓÚº¯Êýg£¨x£©=ax-$\frac{a}{2}$+3£¨a£¾0£©ÔÚ[0£¬$\frac{1}{2}$]Éϵ¥µ÷µÝÔö£¬ÓÉÓÚ¶Ô?x1¡Ê[0£¬1]£¬×Ü?x2¡Ê[0£¬$\frac{1}{2}$]£¬Ê¹µÃf£¨x1£©=g£¨x2£©³ÉÁ¢£¬¿ÉµÃ[0£¬1]¡Ê{g£¨x£©|x¡Ê$[0£¬\frac{1}{2}]$}£¬¼´¿ÉµÃ³ö£®
½â´ð ½â£ºº¯Êýf£¨x£©=$\left\{\begin{array}{l}\frac{x}{3}£¬0¡Üx¡Ü\frac{1}{2}\\ \frac{{2{x^3}}}{x+1}£¬\frac{1}{2}£¼x¡Ü1\end{array}$£¬µ±$0¡Üx¡Ü\frac{1}{2}$ʱ£¬f£¨x£©¡Ê$[0£¬\frac{1}{6}]$£®
$\frac{1}{2}£¼x¡Ü1$ʱ£¬f£¨x£©=$\frac{2{x}^{3}}{x+1}$£¬f¡ä£¨x£©=$\frac{6{x}^{2}£¨x+1£©-2{x}^{3}}{£¨x+1£©^{2}}$=$\frac{2{x}^{2}£¨2x+3£©}{£¨x+1£©^{2}}$£¾0£¬¡àº¯Êýf£¨x£©ÔÚ$£¨\frac{1}{2}£¬1]$Éϵ¥µ÷µÝÔö£¬¡àf£¨x£©¡Ê$£¨\frac{1}{6}£¬1]$£®
¡à?x1¡Ê[0£¬1]£¬¡àf£¨x1£©¡Ê[0£¬1]£®
ÓÉÓÚº¯Êýg£¨x£©=ax-$\frac{a}{2}$+3£¨a£¾0£©ÔÚ[0£¬$\frac{1}{2}$]Éϵ¥µ÷µÝÔö£¬
Èô¶Ô?x1¡Ê[0£¬1]£¬×Ü?x2¡Ê[0£¬$\frac{1}{2}$]£¬Ê¹µÃf£¨x1£©=g£¨x2£©³ÉÁ¢£¬
¡à[0£¬1]¡Ê{g£¨x£©|x¡Ê$[0£¬\frac{1}{2}]$}£¬
¡à$\left\{\begin{array}{l}{g£¨0£©=3-\frac{1}{2}a¡Ü0}\\{g£¨\frac{1}{2}£©=\frac{1}{2}a-\frac{1}{2}a+3¡Ý1}\end{array}\right.$£¬½âµÃa¡Ý6£®
¹ÊÑ¡£ºB£®
µãÆÀ ±¾Ì⿼²éÁ˺¯ÊýµÄµ¥µ÷ÐÔÓëÖµÓò¡¢·ÖÀàÌÖÂÛ·½·¨¡¢¼òÒ×Âß¼µÄÅж¨·½·¨¡¢ÀûÓõ¼ÊýÑо¿º¯ÊýµÄµ¥µ÷ÐÔ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | $\frac{11}{2}$ | B£® | 18 | C£® | $\frac{23}{6}$ | D£® | $\frac{9}{2}$ |