题目内容

4.已知向量$\overrightarrow a$=(1,2),$\overrightarrow b$=(2,-3).
(1)若$\overrightarrow a+λ\overrightarrow b与\overrightarrow a$垂直,求λ的值;
(2)求向量$\vec a$在$\vec b$方向上的投影.

分析 (1)根据向量坐标运算和向量的垂直计算即可;
(2)根据向量投影的定义即可求出.

解答 解:$(1)\overrightarrow a+λ\overrightarrow b=(1,2)+λ(2,-3)=(2λ+1,2-3λ)$,
由于$\overrightarrow a+λ\overrightarrow b$与$\overrightarrow a$垂直,
∴2λ+1+2(2-3λ)=0,
∴$λ=\frac{5}{4}$,
(2)设向量$\overrightarrow a$与$\overrightarrow b$的夹角为θ,向量$\overrightarrow a$在$\overrightarrow b$方向上的投影为$|{\overrightarrow a}|cosθ$,
∴$|{\overrightarrow a}|cosθ=\frac{\overrightarrow a•\overrightarrow b}{|\overrightarrow b|}=\frac{1×2+2×(-3)}{{\sqrt{{2^2}+{{(-3)}^2}}}}=-\frac{{4\sqrt{13}}}{13}$

点评 本题考查了向量的坐标运算和向量的投影的定义,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网