ÌâÄ¿ÄÚÈÝ
2£®Ä³Í¬Ñ§Í¬Ê±Í¶ÖÀÁ½¿Å÷»×Ó£¬µÃµ½µãÊý·Ö±ðΪa£¬b£¬ÔòÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1µÄÀëÐÄÂÊe£¾$\frac{\sqrt{3}}{2}$µÄ¸ÅÂÊÊÇ£¨¡¡¡¡£©| A£® | $\frac{1}{18}$ | B£® | $\frac{5}{36}$ | C£® | $\frac{1}{6}$ | D£® | $\frac{1}{3}$ |
·ÖÎö ijͬѧͬʱͶÖÀÁ½¿Å÷»×Ó£¬µÃµ½µãÊý·Ö±ðΪa£¬b£¬»ù±¾Ê¼þ×ÜÊýn=6¡Á6=36£¬ÀûÓÃÁоٷ¨Çó³öÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1µÄÀëÐÄÂÊe£¾$\frac{\sqrt{3}}{2}$°üº¬µÄ»ù±¾Ê¼þµÄ¸öÊý£¬ÓÉ´ËÄÜÇó³öÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1µÄÀëÐÄÂÊe£¾$\frac{\sqrt{3}}{2}$µÄ¸ÅÂÊ£®
½â´ð ½â£ºÄ³Í¬Ñ§Í¬Ê±Í¶ÖÀÁ½¿Å÷»×Ó£¬µÃµ½µãÊý·Ö±ðΪa£¬b£¬
»ù±¾Ê¼þ×ÜÊýn=6¡Á6=36£¬
ÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1µÄÀëÐÄÂÊe£¾$\frac{\sqrt{3}}{2}$°üº¬µÄ»ù±¾Ê¼þÓУº
£¨3£¬1£©£¬£¨4£¬1£©£¬£¨5£¬1£©£¬£¨5£¬2£©£¬£¨6£¬1£©£¬£¨6£¬2£©£¬¹²6¸ö£¬
¡àÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1µÄÀëÐÄÂÊe£¾$\frac{\sqrt{3}}{2}$µÄ¸ÅÂÊÊÇp=$\frac{6}{36}$=$\frac{1}{6}$£®
¹ÊÑ¡£ºC£®
µãÆÀ ±¾Ì⿼²é¸ÅÂʵÄÇ󷨣¬¿¼²é¹Åµä¸ÅÐ͸ÅÂʼÆË㹫ʽ¡¢ÍÖÔ²ÐÔÖʵȻù´¡ÖªÊ¶£¬¿¼²éÊý¾Ý´¦ÀíÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²éº¯ÊýÓë·½³Ì˼Ï룬ÊÇ»ù´¡Ì⣮
| A£® | $\frac{\sqrt{6}}{2}$¦Ð | B£® | $\frac{\sqrt{5}}{2}$¦Ð | C£® | $\frac{\sqrt{2}}{2}$¦Ð | D£® | $\frac{\sqrt{3}}{2}$¦Ð |
| A£® | £¨-¡Þ£¬0£©¡È£¨1£¬+¡Þ£© | B£® | £¨-¡Þ£¬0£©¡È[1£¬+¡Þ£© | C£® | £¨-¡Þ£¬0]¡È[1£¬+¡Þ£© | D£® | £¨-¡Þ£¬0£©¡È£¨0£¬1£© |