ÌâÄ¿ÄÚÈÝ
12£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=\sqrt{3}cos¦Á\\ y=sin¦Á\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬ÔÚÒÔ×ø±êÔµãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖáµÄ×ø±êϵÖУ¬Ö±Ïß$l£º\;\sqrt{2}¦Ñcos£¨{¦È+\frac{¦Ð}{4}}£©+4=0$£®£¨1£©ÒÑÖªÖ±½Ç×ø±êϵÖУ¬µãAµÄ×ø±êΪ£¨0£¬4£©£¬ÅжϵãAÓëÖ±ÏßlµÄλÖùØÏµ£»
£¨2£©ÉèµãBΪÇúÏßCÉϵÄÒ»¸ö¶¯µã£¬ÇóµãBµ½Ö±Ïßl¾àÀëµÄ×î´óÖµ£®
·ÖÎö £¨1£©¸ù¾Ý¼«×ø±êºÍÖ±½Ç×ø±êµÄת»¯Çó³ölµÄÖ±½Ç×ø±ê·½³Ì£¬´úÈëAµÄ×ø±ê¼ìÑé¼´¿É£»
£¨2£©Éè³öBÊÇ×ø±ê£¬±íʾ³öBµãµ½Ö±ÏßlµÄ¾àÀ룬¸ù¾ÝÈý½Çº¯ÊýµÄÐÔÖÊÇó³ödµÄ×î´óÖµ¼´¿É£®
½â´ð ½â£º£¨1£©$l£º\;\sqrt{2}¦Ñcos£¨{¦È+\frac{¦Ð}{4}}£©+4=\sqrt{2}¦Ñ£¨{cos¦Ècos\frac{¦Ð}{4}-sin¦Èsin\frac{¦Ð}{4}}£©+4=¦Ñcos¦È-¦Ñsin¦È+4=0$£¬
ËùÒÔÖ±ÏßlÔÚÖ±½Ç×ø±êϵÖеķ½³ÌΪx-y+4=0£¬
¾ÑéÖ¤£¬µãA£¨0£¬4£©ÔÚÖ±ÏßlÉÏ£®
£¨2£©BµãÔÚÇúÏßCÉÏ£¬ÉèBµã×ø±êΪ$£¨\sqrt{3}cos¦Á£¬sin¦Á£©$£¬
ÔòBµãµ½Ö±ÏßlµÄ¾àÀëΪ$d=\frac{{\left|{\sqrt{3}cos¦Á-sin¦Á+4}\right|}}{{\sqrt{2}}}=\frac{{\left|{2cos£¨{¦Á+\frac{¦Ð}{6}}£©+4}\right|}}{{\sqrt{2}}}$£¬
µ±$cos£¨{¦Á+\frac{¦Ð}{6}}£©=1$ʱ£¬${d_{max}}=\frac{6}{{\sqrt{2}}}=3\sqrt{2}$£®
µãÆÀ ±¾Ì⿼²éÁ˼«×ø±êºÍÖ±½Ç×ø±êµÄת»¯£¬¿¼²éµãµ½Ö±ÏߵľàÀ룬¿¼²éÈý½Çº¯ÊýµÄÐÔÖÊ£¬ÊÇÒ»µÀÖеµÌ⣮
| A£® | i£¾5 | B£® | i£¾6 | C£® | i£¾4 | D£® | i¡Ý4 |
| A£® | S¡÷PBC2=S¡÷PAB2+S¡÷PAC2 | B£® | S¡÷ABC2=S¡÷PAB2+S¡÷PAC2 | ||
| C£® | S¡÷ABC2=S¡÷PAB2+S¡÷PAC2+S¡÷PBC2 | D£® | S¡÷PBC2=S¡÷PAB2+S¡÷PAC2+S¡÷ABC2 |
| A£® | 10 | B£® | 15 | C£® | 20 | D£® | 25 |
| A£® | $\frac{1}{18}$ | B£® | $\frac{5}{36}$ | C£® | $\frac{1}{6}$ | D£® | $\frac{1}{3}$ |