题目内容

4.已知数列{an}的前n项和为Sn,若对任意正整数n,都有an=$\frac{3}{4}{S_n}$+2.
(1)设bn=log2an,求证:数列{bn}为等差数列;
(2)在(1)的条件下,设cn=(-1)n+1$\frac{n+1}{{{b_n}{b_{n+1}}}}$,数列{cn}的前n项和为Tn,求证:$\frac{1}{21}$≤Tn≤$\frac{2}{15}$.

分析 (1)通过对${a_n}=\frac{3}{4}{S_n}+2$变形可知${S_n}=\frac{4}{3}({a_n}-2)$,并令n=1可知a1=8,当n≥2时,利用${S_n}=\frac{4}{3}({a_n}-2)$与${S_{n+1}}=\frac{4}{3}({a_{n+1}}-2)$作差、整理可知an+1=4an,进而计算可得结论;
(2)通过(1)裂项可知数列{cn}的通项公式,进而分n为奇数、偶数两种情况讨论可求出Tn,通过分别判断出各自的单调性,整理即得结论.

解答 证明:(1)由${a_n}=\frac{3}{4}{S_n}+2$,得${S_n}=\frac{4}{3}({a_n}-2)$,
当n=1时,${a_1}=\frac{4}{3}({a_1}-2)$,解得a1=8.
由${S_n}=\frac{4}{3}({a_n}-2)$,①
得${S_{n+1}}=\frac{4}{3}({a_{n+1}}-2)$,②
②-①得,${a_{n+1}}=\frac{4}{3}{a_{n+1}}-\frac{4}{3}{a_n}$,即an+1=4an
所以{an}为首项为8、公比为4的等比数列,
所以${a_n}=8×{4^{n-1}}={2^{2n+1}}$,
所以${b_n}={log_2}{2^{2n+1}}=2n+1$,bn+1-bn=2,
所以数列{bn}为等差数列;
(2)由(1)可知${c_n}={(-1)^{n+1}}\frac{n+1}{{{b_n}{b_{n+1}}}}={(-1)^{n+1}}×\frac{1}{4}×\frac{4(n+1)}{(2n+1)(2n+3)}={(-1)^{n+1}}×\frac{1}{4}(\frac{1}{2n+1}+\frac{1}{2n+3})$,
当n为偶数时,${T_n}=\frac{1}{4}[(\frac{1}{3}+\frac{1}{5})-(\frac{1}{5}+\frac{1}{7})+(\frac{1}{7}+\frac{1}{9})-(\frac{1}{9}+\frac{1}{11})+$…$-(\frac{1}{2n+1}+\frac{1}{2n+3})]$=$\frac{1}{4}(\frac{1}{3}-\frac{1}{2n+3})$;
当n为奇数时,${T_n}=\frac{1}{4}[(\frac{1}{3}+\frac{1}{5})-(\frac{1}{5}+\frac{1}{7})+(\frac{1}{7}+\frac{1}{9})-(\frac{1}{9}+\frac{1}{11})+$…$+(\frac{1}{2n+1}+\frac{1}{2n+3})]$=$\frac{1}{4}(\frac{1}{3}+\frac{1}{2n+3})$;
又∵当n为偶数时,${T_n}=\frac{1}{4}(\frac{1}{3}-\frac{1}{2n+3})$,函数$f(n)=\frac{1}{4}(\frac{1}{3}-\frac{1}{2n+3})$单调递增,${T_2}≤{T_n}<\frac{1}{12}$,即$\frac{1}{21}≤{T_n}<\frac{1}{12}$;
当n为奇数时,${T_n}=\frac{1}{4}(\frac{1}{3}+\frac{1}{2n+3})$,函数$g(n)=\frac{1}{4}(\frac{1}{3}+\frac{1}{2n+3})$单调递减,$\frac{1}{12}<{T_n}≤{T_1}=\frac{2}{15}$.
∴$\frac{1}{21}≤{T_n}≤\frac{2}{15}$.

点评 本题考查数列的通项及前n项和,考查运算求解能力,考查分类讨论的思想,考查并项相消法,注意解题方法的积累,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网