题目内容

若f(x)=x2+2(a-1)x-3在[3,+∞)上是增函数,则实数a的取值范围是
 
考点:二次函数的性质
专题:函数的性质及应用
分析:根据二次函数单调性的特点,可知对称轴在区间左侧,从而求得实数a的取值范围.
解答: 解:∵二次函数f(x)=x2+2(a-1)x-3,图象开口向上,对称轴为x=1-a,
则若其在[3,+∞)上是增函数,
必有对称轴在区间左侧,即1-a≤3
即a≥-2,
故答案为:a≥-2.
点评:本题主要考查二次函数的性质,涉及了二次函数的对称性和单调性,在研究二次函数单调性时,一定要明确开口方向和对称轴.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网