ÌâÄ¿ÄÚÈÝ
ÉèXÊÇÒ»¸ö·Ç¿Õ¼¯ºÏ£¬¦ÓÊÇXµÄÈô¸É¸ö×Ó¼¯×é³ÉµÄ¼¯ºÏ£¬ÈôÂú×㣺¢Ù∅¡Ê¦Ó£¬X¡Ê¦Ó£»¢Ú¦ÓÖÐÈÎÒâ¶à¸öÔªËØµÄ²¢¼¯ÊôÓÚ¦Ó£»¢Û¦ÓÖÐÈÎÒâ¶à¸öÔªËØµÄ½»¼¯ÊôÓÚ¦Ó£®Ôò³Æ¦ÓÊÇXµÄÍØÆË£®ÉèX={a£¬b£¬c}£¬¶ÔÓÚÏÂÃæ¸ø³öµÄ¼¯ºÏ¦Ó£º
£¨1£©¦Ó={∅£¬{a}£¬{b}£¬{a£¬c}£¬{a£¬b£¬c}}£»
£¨2£©¦Ó={∅£¬{a}£¬{c}£¬{a£¬c}£¬{a£¬b£¬c}}£»
£¨3£©¦Ó={∅£¬{a}£¬{a£¬b}£¬{a£¬c}£¬{a£¬b£¬c}}£»
£¨4£©¦Ó={∅£¬{a}£¬{a£¬b}£¬{b£¬c}£¬{a£¬b£¬c}}
Ôò¦ÓÊǼ¯ºÏXµÄÍØÆËµÄ¸öÊýÊÇ£¨¡¡¡¡£©
£¨1£©¦Ó={∅£¬{a}£¬{b}£¬{a£¬c}£¬{a£¬b£¬c}}£»
£¨2£©¦Ó={∅£¬{a}£¬{c}£¬{a£¬c}£¬{a£¬b£¬c}}£»
£¨3£©¦Ó={∅£¬{a}£¬{a£¬b}£¬{a£¬c}£¬{a£¬b£¬c}}£»
£¨4£©¦Ó={∅£¬{a}£¬{a£¬b}£¬{b£¬c}£¬{a£¬b£¬c}}
Ôò¦ÓÊǼ¯ºÏXµÄÍØÆËµÄ¸öÊýÊÇ£¨¡¡¡¡£©
| A¡¢1 | B¡¢2 | C¡¢3 | D¡¢4 |
¿¼µã£º½øÐмòµ¥µÄºÏÇéÍÆÀí
רÌ⣺¼¯ºÏ
·ÖÎö£º¸ù¾ÝÍØÆËµÄ¶¨Ò壬½áºÏÔªËØºÍ¼¯ºÏµÄ¹ØÏµ¼´¿ÉµÃµ½½áÂÛ£®
½â´ð£º
½â£º£¨1£©µ±¦Ó={∅£¬{a}£¬{b}£¬{a£¬c}£¬{a£¬b£¬c}}ʱ£¬{a}¡È{b}={a£¬b}∉¦Ó£¬¹Ê£¨1£©²»ÊǼ¯ºÏXÉϵÄÍØÆËµÄ¼¯ºÏ¦Ó£»
£¨2£©µ±¦Ó={∅£¬{a}£¬{c}£¬{a£¬c}£¬{a£¬b£¬c}}ʱ£¬Âú×㣺¢ÙXÊôÓÚ¦Ó£¬∅ÊôÓÚ¦Ó£»¢Ú¦ÓÖÐÈÎÒâ¶à¸öÔªËØµÄ²¢¼¯ÊôÓÚ¦Ó£»¢Û¦ÓÖÐÈÎÒâ¶à¸öÔªËØµÄ½»¼¯ÊôÓÚ¦Ó£¬Òò´Ë£¨2£©ÊǼ¯ºÏXÉϵÄÍØÆËµÄ¼¯ºÏ¦Ó£»
£¨3£©µ±¦Ó={∅£¬{a}£¬{a£¬b}£¬{a£¬c}£¬{a£¬b£¬c}}ʱ£¬Âú×㣺¢ÙXÊôÓÚ¦Ó£¬∅ÊôÓÚ¦Ó£»¢Ú¦ÓÖÐÈÎÒâ¶à¸öÔªËØµÄ²¢¼¯ÊôÓÚ¦Ó£»¢Û¦ÓÖÐÈÎÒâ¶à¸öÔªËØµÄ½»¼¯ÊôÓÚ¦Ó£¬Òò´Ë£¨3£©ÊǼ¯ºÏXÉϵÄÍØÆËµÄ¼¯ºÏ¦Ó£»
£¨4£©µ±¦Ó={∅£¬{a}£¬{a£¬b}£¬{b£¬c}£¬{a£¬b£¬c}}ʱ£¬Âú×㣺¢ÙXÊôÓÚ¦Ó£¬∅ÊôÓÚ¦Ó£»¢Ú¦ÓÖÐÈÎÒâ¶à¸öÔªËØµÄ²¢¼¯ÊôÓÚ¦Ó£»¢Û¦ÓÖÐÈÎÒâ¶à¸öÔªËØµÄ½»¼¯ÊôÓÚ¦Ó£¬Òò´Ë£¨4£©ÊǼ¯ºÏXÉϵÄÍØÆËµÄ¼¯ºÏ¦Ó£»
¹Ê¦ÓÊǼ¯ºÏXµÄÍØÆËµÄ¸öÊýÊÇ3¸ö£¬
¹ÊÑ¡£ºC
£¨2£©µ±¦Ó={∅£¬{a}£¬{c}£¬{a£¬c}£¬{a£¬b£¬c}}ʱ£¬Âú×㣺¢ÙXÊôÓÚ¦Ó£¬∅ÊôÓÚ¦Ó£»¢Ú¦ÓÖÐÈÎÒâ¶à¸öÔªËØµÄ²¢¼¯ÊôÓÚ¦Ó£»¢Û¦ÓÖÐÈÎÒâ¶à¸öÔªËØµÄ½»¼¯ÊôÓÚ¦Ó£¬Òò´Ë£¨2£©ÊǼ¯ºÏXÉϵÄÍØÆËµÄ¼¯ºÏ¦Ó£»
£¨3£©µ±¦Ó={∅£¬{a}£¬{a£¬b}£¬{a£¬c}£¬{a£¬b£¬c}}ʱ£¬Âú×㣺¢ÙXÊôÓÚ¦Ó£¬∅ÊôÓÚ¦Ó£»¢Ú¦ÓÖÐÈÎÒâ¶à¸öÔªËØµÄ²¢¼¯ÊôÓÚ¦Ó£»¢Û¦ÓÖÐÈÎÒâ¶à¸öÔªËØµÄ½»¼¯ÊôÓÚ¦Ó£¬Òò´Ë£¨3£©ÊǼ¯ºÏXÉϵÄÍØÆËµÄ¼¯ºÏ¦Ó£»
£¨4£©µ±¦Ó={∅£¬{a}£¬{a£¬b}£¬{b£¬c}£¬{a£¬b£¬c}}ʱ£¬Âú×㣺¢ÙXÊôÓÚ¦Ó£¬∅ÊôÓÚ¦Ó£»¢Ú¦ÓÖÐÈÎÒâ¶à¸öÔªËØµÄ²¢¼¯ÊôÓÚ¦Ó£»¢Û¦ÓÖÐÈÎÒâ¶à¸öÔªËØµÄ½»¼¯ÊôÓÚ¦Ó£¬Òò´Ë£¨4£©ÊǼ¯ºÏXÉϵÄÍØÆËµÄ¼¯ºÏ¦Ó£»
¹Ê¦ÓÊǼ¯ºÏXµÄÍØÆËµÄ¸öÊýÊÇ3¸ö£¬
¹ÊÑ¡£ºC
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÔªËØºÍ¼¯ºÏ¹ØÏµµÄÅжϣ¬ÕýÈ·Àí½âÍØÆËµÄ¶¨ÒåÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÒÑÖªÆ½Ãæ¦Á¹ýµãA£¨3£¬0£¬0£©£¬B£¨0£¬3£¬0£©£¬C£¨0£¬0£¬3£©£¬ÔòÔµãOµ½Æ½Ãæ¦ÁµÄ¾àÀëΪ£¨¡¡¡¡£©
| A¡¢3 | ||
| B¡¢6 | ||
C¡¢
| ||
D¡¢2
|
²ÎÊý·½³Ì
£¨¦ÈΪ²ÎÊý£©»¯ÎªÆÕͨ·½³ÌÊÇ£¨¡¡¡¡£©
|
| A¡¢£¨x-1£©2+£¨y+3£©2=1 |
| B¡¢£¨x+3£©2+£¨y-1£©2=4 |
| C¡¢£¨x-2£©2+£¨y+2£©2=4 |
| D¡¢x+y-2=0 |
| A¡¢´óÄ´Ö¸ | B¡¢Ê³Ö¸ |
| C¡¢ÖÐÖ¸ | D¡¢ÎÞÃûÖ¸ |
ÒÑÖªÊýÁÐ{an}¶ÔÈÎÒâm£¬n¡ÊN+¶¼ÓÐam+n=am+an+3£¬Èôa1=3£¬ÔòÊýÁÐ{an}µÄͨÏʽan=£¨¡¡¡¡£©
| A¡¢6n-3 | B¡¢4n-1 |
| C¡¢2n+1 | D¡¢3n |
Æ½ÃæÄÚÓÐn¸öÔ²£¬ÆäÖÐÿÁ½¸öÔ²¶¼ÏཻÓÚÁ½µã£¬ÇÒÿÈý¸öÔ²¶¼²»¹²µã£¬ÓÃf£¨n£©±íʾÕân¸öÔ²°ÑÆ½Ãæ·Ö¸îµÄÇøÓòÊý£¬ÄÇôf£¨n+1£©Óëf£¨n£©Ö®¼äµÄ¹ØÏµÎª£¨¡¡¡¡£©
| A¡¢f£¨n+1£©=f£¨n£©+n |
| B¡¢f£¨n+1£©=f£¨n£©+2n |
| C¡¢f£¨n+1£©=f£¨n£©+n+1 |
| D¡¢f£¨n+1£©=f£¨n£©+n-1 |
ÈôÔÚÈý½ÇÐÎABCÖУ¬ÒÑÖªa2=b2+c2+bc£¬Ôò½ÇAΪ£¨¡¡¡¡£©
| A¡¢60¡ã | B¡¢120¡ã |
| C¡¢30¡ã | D¡¢60¡ã»ò120¡ã |
ÒÑÖªÍÖÔ²O£º
+
=1µÄÀëÐÄÂÊΪe1£¬¶¯¡÷ABCÊÇÆäÄÚ½ÓÈý½ÇÐΣ¬ÇÒ
=
+
£®ÈôABµÄÖеãΪD£¬DµÄ¹ì¼£EµÄÀëÐÄÂÊΪe2£¬Ôò£¨¡¡¡¡£©
| x2 |
| a2 |
| y2 |
| b2 |
| OC |
| 3 |
| 5 |
| OA |
| 4 |
| 5 |
| OB |
| A¡¢e1=e2 |
| B¡¢e1£¼e2 |
| C¡¢e1£¾e2 |
| D¡¢e1e2=1 |