题目内容
7.△ABC中,A=45°,B=30°,a=10,则b=( )| A. | 5$\sqrt{2}$ | B. | 10$\sqrt{2}$ | C. | 10$\sqrt{6}$ | D. | 5$\sqrt{6}$ |
分析 根据题意,由正弦定理可得$\frac{a}{sinA}$=$\frac{b}{sinB}$,变形可得b=$\frac{a•sinB}{sinA}$,带入数据计算可得答案.
解答 解:根据题意,△ABC中,有$\frac{a}{sinA}$=$\frac{b}{sinB}$,则b=$\frac{a•sinB}{sinA}$,
又由A=45°,B=30°,a=10,
则b=$\frac{a•sinB}{sinA}$=$\frac{10×\frac{1}{2}}{\frac{\sqrt{2}}{2}}$=5$\sqrt{2}$;
故选:A.
点评 本题考查正弦定理的应用,关键是正确运用正弦定理.
练习册系列答案
相关题目
18.若以双曲线$\frac{x^2}{a^2}-\frac{y^2}{4}=1({a>0})$的左、右焦点和点$({2,\sqrt{5}})$为顶点的三角形为直角三角形,则该双曲线的焦距为( )
| A. | $2\sqrt{5}$ | B. | 6 | C. | 8 | D. | 10 |
2.已知函数f(x)=$\left\{\begin{array}{l}{{e}^{x},x≤1}\\{f(x-1),x>1}\end{array}\right.$,则f($\frac{3}{2}$)=( )
| A. | $\sqrt{e}$ | B. | $\sqrt{e^3}$ | C. | $\root{3}{e^2}$ | D. | $\root{3}{e}$ |
16.近年来郑州空气污染较为严重,现随机抽取一年(365天)内100天的空气中PM2.5指数的监测数据,统计结果如下:
记某企业每天由空气污染造成的经济损失为S(单位:元),PM2.5指数为x.当x在区间[0,100]内时对企业没有造成经济损失;当x在区间(100,300]内时对企业造成经济损失成直线模型(当PM2.5指数为150时造成的经济损失为500元,当PM2.5指数为200时,造成的经济损失为700元);当PM2.5指数大于300时造成的经济损失为2000元.
(1)试写出S(x)的表达式;
(2)试估计在本年内随机抽取一天,该天经济损失S大于500元且不超过900元的概率;
(3)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面列联表,并判断是否有95%的把握认为郑州市本年度空气重度污染与供暖有关?
附:
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
| PM2.5 | [0,50] | (50,100] | (100,150] | (150,200] | (200,250] | (250,300] | >300 |
| 空气质量 | 优 | 良 | 轻微污染 | 轻度污染 | 中度污染 | 中度重污染 | 重度污染 |
| 天数 | 4 | 13 | 18 | 30 | 9 | 11 | 15 |
(1)试写出S(x)的表达式;
(2)试估计在本年内随机抽取一天,该天经济损失S大于500元且不超过900元的概率;
(3)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面列联表,并判断是否有95%的把握认为郑州市本年度空气重度污染与供暖有关?
附:
| P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 1.32 | 2.07 | 2.70 | 3.74 | 5.02 | 6.63 | 7.87 | 10.828 |
| 非重度污染 | 重度污染 | 合计 | |
| 供暖季 | 22 | 8 | 30 |
| 非供暖季 | 63 | 7 | 70 |
| 合计 | 85 | 15 | 100 |
17.若物体的运动方程是s=t3+t2-1,t=3时物体的瞬时速度是( )
| A. | 27 | B. | 31 | C. | 39 | D. | 33 |