题目内容
5.已知{an}是各项均为正数的等比数列,{bn}是等差数列,且a1=b1=1,b2+b3=2a3,a5-2b2=7.(Ⅰ)求{an}和{bn}的通项公式;
(Ⅱ)设Cn=anbn,n∈N*,求数列{Cn}的前n项和.
分析 (Ⅰ)设数列{an}的公比为q(q>0),数列{bn}的公差为d,由$\left\{\begin{array}{l}{2{q}^{2}-3d=2}\\{{q}^{4}-3d=10}\end{array}\right.$,整理得q4-2q2-8=0,得$\left\{\begin{array}{l}{q=2}\\{d=2}\end{array}\right.$,于是可得{an}和{bn}的通项公式;
(Ⅱ)由(Ⅰ)得Cn=anbn=(2n-1)2n-1,利用错位相减法求和即可.
解答 解:(Ⅰ)设数列{an}的公比为q(q>0),数列{bn}的公差为d,
由$\left\{\begin{array}{l}{2{q}^{2}-3d=2}\\{{q}^{4}-3d=10}\end{array}\right.$,整理得q4-2q2-8=0,得$\left\{\begin{array}{l}{q=2}\\{d=2}\end{array}\right.$.
∴${a}_{n}={2}^{n-1}$,bn=2n-1
(Ⅱ)由(Ⅰ)得Cn=anbn=(2n-1)2n-1,
设数列{Cn}的前n项和为sn
sn=1×20+3×21+5×22+…+(2n-3)×2n-2+(2n-1)×2n-1.
2sn=1×21+3×22+5×23+…+(2n-3)×2n-1+(2n-1)×2n
两式相减得-sn=1+22+23+34+…+2n-(2n-1)×2n=-(2n-3)×2n-3
sn=(2n-3)×2n+3,(n∈N+)
点评 本题考查了等差数列、等比数列的通项,错位相减法求和,属于中档题.
练习册系列答案
相关题目
16.直线$\sqrt{3}$x+y+1=0的倾斜角为( )
| A. | 150° | B. | 120° | C. | 60° | D. | 30° |
20.设直线3x-2y-12=0与直线4x+3y+1=0交于点M,若一条光线从点P(3,2)射出,经y轴反射后过点M,则人射光线所在的直线方程为( )
| A. | x-y-1=0 | B. | x-y+1=0 | C. | x-y-5=0 | D. | x+y-5=0 |
14.已知$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(1,1),$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为θ,则cosθ=( )
| A. | $\frac{\sqrt{10}}{10}$ | B. | $\frac{3\sqrt{10}}{10}$ | C. | $\frac{\sqrt{10}}{5}$ | D. | $\frac{\sqrt{15}}{5}$ |