题目内容
19.求曲线y=x3-x+1过点(1,1)的切线方程为2x-y-1=0或x+4y-5=0.分析 求出函数的导数,利用导数的几何意义:切点处的导数值是切线的斜率,分点(1,1)是切点和原点不是切点两类求,先求出函数y=x3-x+1的导函数,然后求出在切点处的导数,从而求出切线的斜率,利用点斜式方程求出切线方程即可.
解答 解:∵y=x3-x+1,∴y′=3x2-1,
设切线的斜率为k,切点是(x0,y0),
则有y0=x03-x0+1,①
k=f′(x0)=3x02-1,
又k=$\frac{{y}_{0}-1}{{x}_{0}-1}$=3x02-1,②
由①②得x0=1,或x0=$\frac{1}{2}$,
k=2,或k=-$\frac{1}{4}$.
∴所求曲线的切线方程为:2x-y-1=0或x+4y-5=0,
故答案为2x-y-1=0或x+4y-5=0.
点评 本题主要考查了利用导数研究曲线上某点切线方程,考查导数的几何意义:切点处的导数值是切线的斜率;注意“在点处的切线”与“过点的切线”的区别.属于中档题.
练习册系列答案
相关题目
10.某公司为确定下一年投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年利润y(单位:万元)的影响,对近5年的宣传费xi和年利润yi(i=1,2,3,4,5)进行了统计,列出了下表:
员工小王和小李分别提供了不同的方案.
(1)小王准备用线性回归模型拟合y与x的关系,请你建立y关于x的线性回归方程(系数精确到0.01);
(2)小李决定选择对数回归模拟拟合y与x的关系,得到了回归方程:$\widehat{y}$=1.450lnx+0.024,并提供了相关指数R2=0.995,请用相关指数说明选择哪个模型更合适,并预测年宣传费为4万元的年利润(精确到0.01)(小王也提供了他的分析数据$\sum_{i=1}^{5}$(yi-$\widehat{y}$i)2=1.15)
参考公式:相关指数R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-{\widehat{y}}_{i})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$
回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中斜率和截距的最小二乘法估计公式分别为$\widehat{b}$=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehat{a}$=$\widehat{y}$-$\widehat{b}$x,参考数据:ln40=3.688,${\sum_{i=1}^5{({x_i}-\overline x)}^2}$=538.
| x(单位:千元) | 2 | 4 | 7 | 17 | 30 |
| y(单位:万元) | 1 | 2 | 3 | 4 | 5 |
(1)小王准备用线性回归模型拟合y与x的关系,请你建立y关于x的线性回归方程(系数精确到0.01);
(2)小李决定选择对数回归模拟拟合y与x的关系,得到了回归方程:$\widehat{y}$=1.450lnx+0.024,并提供了相关指数R2=0.995,请用相关指数说明选择哪个模型更合适,并预测年宣传费为4万元的年利润(精确到0.01)(小王也提供了他的分析数据$\sum_{i=1}^{5}$(yi-$\widehat{y}$i)2=1.15)
参考公式:相关指数R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-{\widehat{y}}_{i})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$
回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中斜率和截距的最小二乘法估计公式分别为$\widehat{b}$=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehat{a}$=$\widehat{y}$-$\widehat{b}$x,参考数据:ln40=3.688,${\sum_{i=1}^5{({x_i}-\overline x)}^2}$=538.
11.直线y=2x-2被圆(x-2)2+(y-2)2=25所截得的弦长为( )
| A. | 6 | B. | 8 | C. | 10 | D. | 12 |