题目内容
(本小题满分14分)已知点在直线:上,是直线与轴的
交点,数列是公差为1的等差数列.
(1)求数列,的通项公式;
(2)求证:.
(本小题满分10分)选修4—4:坐标系与参数方程
已知直线l经过点P(,1),倾斜角α=,圆C的极坐标方程为=cos(θ-).
(Ⅰ)写出直线l的参数方程,并把圆C的方程化为直角坐标方程;
(Ⅱ)设l与圆C相交于A,B两点,求点P到A,B两点的距离之积.
已知实数,执行如图所示的程序框图,则输出的不小于的概率为( )
A. B. C. D.
设函数有两个极值点,且,,则点
在平面上所构成区域的面积为( )
已知双曲线:经过点,则双曲线的离心率为( )
(几何证明选讲选做题)如图,在平行四边形中,,点为边的中点,与的延长线交于点,且平分,作,垂足为,若,则的长为 .
已知两定点,,若直线上存在点,使得,则称直线为“
型直线”.给出下列直线:①;②;③;④;⑤.其中是“
型直线”的条数为( )
A.1 B.2 C.3 D.4
某校选修乒乓球课程的学生中,高一年级有40名,高二年级有50名现用分层抽样的方法在这90名学生中抽取一个样本,已知在高一年级的学生中抽取了8名,则在高二年级的学生中应抽取的人数为 .
已知定义在上的单调函数的图像经过点、,若函数的反函数为,则不等式的解集为 .