题目内容
3.甲乙两位同学进行乒乓球比赛,甲获胜的概率为0.4,现采用随机模拟的方法估计这两位同学打3局比赛甲恰好获胜2局的概率:先利用计算器产生0到9之间取整数值的随机数,制定1,2,3,4表示甲获胜,用5,6,7,8,9,0表示乙获胜,再以每三个随机数为一组,代表3局比赛的结果,经随机模拟产生了30组随机数102 231 146 027 590 763 245 207 310 386 350 481 337 286 139
579 684 487 370 175 772 235 246 487 569 047 008 341 287 114
据此估计,这两位同学打3局比赛甲恰好获胜2局的概率为( )
| A. | $\frac{1}{3}$ | B. | $\frac{3}{10}$ | C. | $\frac{2}{5}$ | D. | $\frac{11}{30}$ |
分析 由题意知模拟打3局比赛甲恰好获胜2局的结果,经随机模拟产生了如下30组随机数,在30组随机数中表示打3局比赛甲恰好获胜2局的有可以通过列举得到共9组随机数,根据概率公式,得到结果.
解答 解:由题意知模拟打3局比赛甲恰好获胜2局的结果,经随机模拟产生了如下20组随机数,
在30组随机数中表示打3局比赛甲恰好获胜2局的有:102,146,245,310,481,337,139,235,246,共9组随机数,
∴所求概率为$\frac{9}{30}$=$\frac{3}{10}$.
故选B.
点评 本题考查模拟方法估计概率,解题主要依据是等可能事件的概率,注意列举法在本题的应用.
练习册系列答案
相关题目
13.已知p:“?x∈[1,2],x2-a≥0”,q:“?x∈R”,使得x2+2ax+2-a=0,那么命题“p∧q”为真命题的充要条件是( )
| A. | a≤-2或a=1 | B. | a≤-2或1≤a≤2 | C. | a≥1 | D. | -2≤a≤1 |
18.已知M=x2-3x+7,N=-x2+x+1,则( )
| A. | M<N | B. | M>N | ||
| C. | M=N | D. | M,N的大小与x的取值有关 |
15.已知不等式组$\left\{\begin{array}{l}{y≤5}&{\;}\\{2x-y+3≤0}&{\;}\\{x+y-1≥0}&{\;}\end{array}\right.$表示的平面区域为D,若?(x,y)∈D,|x|+2y≤a为真命题,则实数a的取值范围是( )
| A. | [10,+∞) | B. | [11,+∞) | C. | [13,+∞) | D. | [14,+∞) |
12.在数列{an}中,a1=-2,an+1=an-2n,则a2017的值为( )
| A. | 22016 | B. | 22018 | C. | -22017 | D. | 22017 |
13.已知函数f(x)(x∈R)满足f(x+π)=f(x)+cosx,当0≤x<π时,f(x)=-1,则f($\frac{2017π}{3}$)=( )
| A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | -1 |