ÌâÄ¿ÄÚÈÝ
10£®Ï±íÊÇijµØÒøÐÐÁ¬ÐøÎåÄêµÄ´¢Ðî´æ¿î£¨Äêµ×Óà¶î£©£¬¼ÙÉè´¢Ðî´æ¿îy¹ØÓÚÄê·ÝxµÄÏßÐԻع鷽³ÌΪ $\hat y=\hat bx+\hat a$£¬Ôò$\hat b$=1.2£®£¨$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$£¬ÆäÖÐ1¡Á5+2¡Á6+3¡Á7+4¡Á8+5¡Á10=120£¬12+22+32+42+52=55£©
| Äê·Ýx | 1 | 2 | 3 | 4 | 5 |
| ´¢Ðî´æ¿îy£¨Ç§ÒÚÔª£© | 5 | 6 | 7 | 8 | 10 |
·ÖÎö Çó³ö$\overline{x}$=3£¬$\overline{y}$=7.2£¬ÀûÓù«Ê½¿ÉµÃ½áÂÛ£®
½â´ð ½â£ºÓÉÌâÒ⣬$\overline{x}$=3£¬$\overline{y}$=7.2£¬
¡ß1¡Á5+2¡Á6+3¡Á7+4¡Á8+5¡Á10=120£¬12+22+32+42+52=55£¬
¡à$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$=$\frac{120-5¡Á3¡Á7.2}{55-5¡Á{3}^{2}}$=1.2£¬
¹Ê´ð°¸Îª1.2£®
µãÆÀ ±¾Ì⿼²éÏßÐԻع鷽³Ì£¬¿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬±È½Ï»ù´¡£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
20£®ÉèÏòÁ¿$\overrightarrow a$Óë$\overrightarrow b$µÄ¼Ð½ÇΪ¦È£¬ÇÒ$\overrightarrow a=£¨{-2£¬1}£©£¬\overrightarrow a+2\overrightarrow b=£¨{2£¬3}£©$£¬Ôòcos¦È=£¨¡¡¡¡£©
| A£® | $-\frac{3}{5}$ | B£® | $\frac{3}{5}$ | C£® | $\frac{{\sqrt{5}}}{5}$ | D£® | $-\frac{{2\sqrt{5}}}{5}$ |
1£®Èô{1£¬2}?A⊆{1£¬2£¬3£¬4£¬5}£¬ÔòÂú×ãÌõ¼þµÄ¼¯ºÏAµÄ¸öÊýÊÇ£¨¡¡¡¡£©
| A£® | 6 | B£® | 8 | C£® | 7 | D£® | 9 |
18£®Èô´Ó3¸öº£±õ³ÇÊкÍÁ½¸öÄÚ½³ÇÊÐÖÐËæ»úÑ¡2¸öÈ¥ÂÃÓΣ¬ÄÇô¸ÅÂÊÊÇ$\frac{7}{10}$µÄʼþÊÇ£¨¡¡¡¡£©
| A£® | ÖÁÉÙѡһ¸öº£±õ³ÇÊÐ | B£® | Ç¡ºÃѡһ¸öº£±õ³ÇÊÐ | ||
| C£® | ÖÁ¶àѡһ¸öº£±õ³ÇÊÐ | D£® | Á½¸ö¶¼Ñ¡º£±õ³ÇÊÐ |
5£®ÒÑÖªiÊÇÐéÊýµ¥Î»£¬Ôò¸´Êý£¨1+i£©2µÄÐ鲿ÊÇ£¨¡¡¡¡£©
| A£® | 2 | B£® | -2 | C£® | 2i | D£® | -2i |