ÌâÄ¿ÄÚÈÝ
2£®É躯Êýf£¨x£©=lnx-$\frac{1}{2}a{x^2}$-bx£®£¨1£©µ±a=-2£¬b=3ʱ£¬Çóº¯Êýf£¨x£©µÄ¼«Öµ£»
£¨2£©ÁîF£¨x£©=f£¨x£©+$\frac{1}{2}a{x^2}+bx+\frac{a}{x}£¨{0£¼x¡Ü3}£©$£¬ÆäͼÏóÉÏÈÎÒâÒ»µãP£¨x0£¬y0£©´¦ÇÐÏßµÄбÂÊk¡Ü$\frac{1}{2}$ºã³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨3£©µ±a=0£¬b=-1ʱ£¬·½³Ìf£¨x£©=mxÔÚÇø¼ä[1£¬e2]ÄÚÇ¡ÓÐÁ½¸öʵÊý½â£¬ÇóʵÊýmµÄȡֵ·¶Î§£®
·ÖÎö £¨1£©½«a£¬bµÄÖµ´øÈëf£¨x£©£¬Çó³öº¯Êýf£¨x£©µÄµ¼Êý£¬½â¹ØÓÚµ¼º¯ÊýµÄ·½³Ì£¬Çó³öº¯ÊýµÄ¼«Öµ¼´¿É£»
£¨2£©Çó³öF£¨x£©µÄµ¼Êý£¬ÎÊÌâת»¯Îªa¡Ý${£¨-\frac{1}{2}x_0^2+{x_0}£©_{min}}$£¬´Ó¶øÇó³öaµÄ·¶Î§¼´¿É£»
£¨3£©Çó³öf£¨x£©µÄ½âÎöʽ£¬ÎÊÌâת»¯Îªm=1+$\frac{lnx}{x}$ÔÚÇø¼ä[1£¬e2]ÄÚÇ¡ÓÐÁ½¸öʵÊý½â£®
½â´ð ½â£º£¨1£©ÒÀÌâÒ⣬f£¨x£©µÄ¶¨ÒåÓòΪ£¨0£¬+¡Þ£©£¬
µ±a=-2£¬b=3ʱ£¬f£¨x£©=lnx+x2-3x£¬£¨x£¾0£©£¬
f¡ä£¨x£©=$\frac{£¨2x-1£©£¨x-1£©}{x}=0£¬µÃx=\frac{1}{2}$»òx=1
Áбíf£¨x£©µÄ¼«´óֵΪ$f£¨\frac{1}{2}£©=-ln2-\frac{5}{4}$£¬
f£¨x£©µÄ¼«Ð¡ÖµÎªf£¨1£©=-2£»
£¨2£©F£¨x£©=lnx+$\frac{a}{x}$£¬x¡Ê£¨0£¬3]£¬
ÔòÓÐk=F'£¨x0£©=$\frac{{{x_0}-a}}{{{x_0}^2}}¡Ü\frac{1}{2}$£¬ÔÚ£¨0£¬3]ÉÏÓн⣬
¡àa¡Ý${£¨-\frac{1}{2}x_0^2+{x_0}£©_{min}}$
ËùÒÔ µ±x=1ʱ£¬-$\frac{1}{2}x_0^2+{x_0}$È¡µÃ×îСֵ$\frac{1}{2}$£¬¡àa¡Ý$\frac{1}{2}$£®
£¨3£©µ±a=0£¬b=-1ʱ£¬f£¨x£©=lnx+x=mx£¬£¨x¡Ê[1£¬e2]£©£¬
µÃm=1+$\frac{lnx}{x}ÔÚ[{1£¬{e^2}}]ÓÐÁ½¸öʵÊý½â$£¬
$m¡Ê[\frac{2}{e^2}+1£¬\frac{1}{e}+1£©$ʱ·½³ÌÓÐÁ½¸öʵÊý½â£®
µãÆÀ ±¾Ì⿼²éÁ˺¯ÊýµÄµ¥µ÷ÐÔ¡¢×îÖµÎÊÌ⣬¿¼²éµ¼ÊýµÄÓ¦ÓÃÒÔ¼°º¯Êýºã³ÉÁ¢ÎÊÌ⣬ÊÇÒ»µÀÖеµÌ⣮
| A£® | {x|x£¼0} | B£® | {x|x£¾1} | C£® | {x|x£¼2} | D£® | {x|x£¼1} |