题目内容

已知函数f(x)=
|lgx|,x>0
-x(x+4),x≤0
,则函数y=f(x)-3的零点的个数为(  )
A、1B、2C、3D、4
考点:根的存在性及根的个数判断
专题:函数的性质及应用
分析:法1:由y=f(x)-3=0,得f(x)=3,分别作出函数f(x)和y=3的图象,利用数形结合即可得到结论.
法2:利用分段函数分别解方程f(x)=3,即可得到函数零点的个数.
解答: 解:法1:由y=f(x)-3=0,得f(x)=3,分别作出函数f(x)和y=3的图象如图,
则由图象可知f(x)=3有4个不同的交点,
即函数y=f(x)-3的零点的个数为4个.
法2:由y=f(x)-3=0,得f(x)=3,
当x>0时,由f(x)=|lgx|=3,解得lgx=3或-3,即x=1000或x=
1
1000
,此时函数有两个零点,
当x≤0时,由f(x)=-x(x+4)=3,即x2+4x+3=0,解得x=-3或-1,此时函数有两个零点,
综上函数y=f(x)-3的零点的个数为4个,
故选:D.
点评:本题主要考查主要考查函数零点的个数的判断,利用函数零点的定义可以直接求解,也可以利用数形结合来求解,本题如果使用数形结合容易出错.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网