题目内容

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的离心率等于2,它的右准线过抛物线y2=4x的焦点,则双曲线的方程为
 
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:利用双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的离心率等于2,它的右准线过抛物线y2=4x的焦点,求出a,c,可得b,即可求出双曲线的方程.
解答: 解:∵双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的离心率等于2,它的右准线过抛物线y2=4x的焦点,
c
a
=2,
a2
c
=1,
∴a=2,c=4,
∴b=2
3

∴双曲线的方程为
x2
4
-
y2
12
=1

故答案为:
x2
4
-
y2
12
=1
点评:本题主要考查了双曲线的标准方程、圆锥曲线的共同特征,解答关键是对于圆锥曲线的共同特征的理解与应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网