题目内容

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
3
2
,过焦点且垂直于长轴的直线被椭圆截得的弦长为1,过点M(3,0)的直线与椭圆C相交于两点A,B.
(1)求椭圆C的方程;
(2)设P为椭圆上一点,且满足
OA
+
OB
=t
OP
(O为坐标原点),当|AB|=
3
时,求实数t的值.
考点:直线与圆锥曲线的综合问题
专题:综合题,平面向量及应用,圆锥曲线的定义、性质与方程
分析:(1)利用离心率求得a和c关系,进而利用椭圆方程中a,b和c的关系求得a和b的关系,最后利用过焦点且垂直于长轴的直线被椭圆截得的弦长求得b,则a可求,椭圆的方程可求.
(2)设出A、B、P的坐标和AB的直线方程,与椭圆的方程联立消去y,利用判别式大于0求得k的范围,利用韦达定理表示出x1+x2和x1x2,利用
OA
+
OB
=t
OP
求得k和t的关系,把点P坐标代入椭圆的方程,利用|AB|=
3
求得k的值,进而利用k和t的关系求得t的值.
解答: 解:(1)由已知e=
c
a
=
3
2
,所以
c2
a2
=
3
4

所以a2=4b2,c2=3b2
所以
x2
4b2
+
y2
b2
=1

又由过焦点且垂直于长轴的直线被椭圆截得的弦长为
2b2
a
=1

所以b=1,
所以椭圆C的方程为
x2
4
+y2=1

(2)设A(x1,y1),B(x2,y2),P(x,y)
设AB:y=k(x-3)与椭圆联立得
y=k(x-3)
x2
4
+y2=1

整理得(1+4k2)x2-24k2x+36k2-4=0
其中△=242k4-16(9k2-1)(1+4k2)>0得k2
1
5

x1+x2=
24k2
1+4k2
x1x2=
36k2-4
1+4k2

|AB|=
1+k2
(x1+x2)2-4x1x2
=
3
1+k2
16(1-5k2)
1+4k2
=
3

即128k4+88k2-13=0,
所以k2=
1
8
k2=-
13
16
(舍)
又因为
OA
+
OB
=(x1+x2y1+y2)=t(x,y)

所以x=
1
t
(x1+x2)
=
24k2
t(1+4k2)

y=
1
t
(y1+y2)=
1
t
[k(x1+x2)-6k]=
-6k
t(1+4k2)

由点P在椭圆上得
(24k2)2
t2(1+4k2)2
+
144k2
t2(1+4k2)2
=4

即36k2=t2(1+4k2),
t2=
36k2
1+4k2
=9-
9
1+4k2
=3,
所以t=±
3
点评:本题考查了椭圆的标准方程,考查了椭圆的简单几何性质,主要考查了直线与圆锥曲线的综合问题.解题的过程一般是把直线与圆锥曲线的方程联立,利用韦达定理和判别式来作为解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网