题目内容

已知f(x)为R上的可导函数,且满足f(x)>f′(x),对任意正实数a,下面不等式恒成立的是(  )
A、f(a)>
f(0)
ea
B、f(a)<
f(0)
ea
C、f(a)>eaf(0)
D、f(a)<eaf(0)
考点:导数的运算
专题:导数的综合应用
分析:根据条件构造函数F(x)=
f(x)
ex
,求函数的导数,利用函数的单调性即可得到结论.
解答: 解:设F(x)=
f(x)
ex

则F'(x)=
f′(x)ex-f(x)ex
[ex]2
=
f′(x)-f(x)
ex

∵f(x)>f′(x),
∴F'(x)<0,即函数F(x)在定义域上单调递减.
∵任意正实数a,满足a>0,
∴F(a)<F(0),
f(a)
ea
f(0)
e0
=f(0)

∴f(a)<eaf(0),
故选:D.
点评:本题主要考查函数单调性的判断和应用,根据条件构造函数是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网