题目内容

8.证明:设Sn=$\sqrt{1×2}+\sqrt{2×3}$+…+$\sqrt{n({n+1})}$(n∈N+)时,不等式$\frac{{n({n+1})}}{2}<{S_n}<\frac{{n({n+3})}}{2}$.

分析 根据不等式n<$\sqrt{n(n+1)}$<n+1,利用等差数列的求和公式得出结论.

解答 证明:设an=n,bn=n+1,{an}的前n项和为An,{bn}的前n项和为Bn
则An=1+2+3+…+n=$\frac{n(n+1)}{2}$,Bn=2+3+4+…+(n+1)=$\frac{n(n+3)}{2}$.
∵n<$\sqrt{n(n+1)}$<n+1,
∴An<Sn<Bn
即$\frac{n(n+1)}{2}$<Sn<$\frac{n(n+3)}{2}$.

点评 本题考查了等差数列的前n项和公式,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网