题目内容

非零向量
a
b
满足2|
a
|=|
b
|,
a
⊥(
a
+
b
),则
a
b
的夹角为(  )
A、
π
6
B、
6
C、
π
3
D、
3
考点:平面向量数量积的运算
专题:计算题,平面向量及应用
分析:运用向量垂直的条件:数量积为0,以及向量的数量积的定义和向量的平方即为模的平方,结合夹角的定义,即可得到所求.
解答: 解:由2|
a
|=|
b
|,
a
⊥(
a
+
b
),
a
•(
a
+
b
)=0,
即为
a
2
+
a
b
=0,
即为|
a
|2+|
a
|•|
b
|•cos<
a
b
>=0,
即|
a
|2+2|
a
|2cos<
a
b
>=0,
即cos<
a
b
>=-
1
2

由0≤<
a
b
>≤π,
a
b
的夹角为
3

故选D.
点评:本题考查向量数量积的定义和性质,主要考查向量垂直的条件:数量积为0,考查运算能力,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网