题目内容
20.若实数a>1,则函数f(x)=loga(x2-5x+6)的单调减区间为( )| A. | ($\frac{5}{2}$,+∞) | B. | (3,+∞) | C. | (-∞,$\frac{5}{2}$) | D. | (-∞,2) |
分析 求出函数f(x)=loga(x2-5x+6)的定义域为{x|x>3,或x<2},由t=x2-5x+6及y=logat的单调性结合复合函数的单调性可1求函数f(x)单调递减区间.
解答 解:函数f(x)=loga(x2-5x+6)的定义域为{x|x>3,或x<2}
∵t=x2-5x+6在(-∞,2)上单调递减,在(3,+∞)单调递增
实数a>1,y=logat在(0,+∞)单调递增
由复合函数的单调性可知,函数f(x)在(-∞,2)单调递减
故选:D.
点评 本题考查了对数函数的单调区间,训练了复合函数的单调区间的求法,复合函数的单调性满足“同增异减”的原则,是中档题.
练习册系列答案
相关题目
11.若a∈R,则“a>3”是“a2-9>0”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
8.抛掷一个均匀的正方体玩具(它的每一面上分别标有数字1,2,3,4,5,6),它落地时向上的数是3的概率为( )
| A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | 1 |
12.极坐标系中与圆ρ=6sinθ相切的一条直线的方程为( )
| A. | ρsinθ=3 | B. | ρcosθ=3 | C. | $ρ=6sin(θ+\frac{π}{3})$ | D. | $ρ=6sin(θ-\frac{π}{3})$ |