题目内容

设集合M={y|y=log
1
2
x,0<x≤
1
4
}
,N={y|y=2x,x≤2}.
(1)求M∩N;
(2)记集合A=M∩N,已知B={x|a-1≤x≤5-a,a∈R},若B⊆A,求a的取值范围.
考点:交集及其运算,集合的包含关系判断及应用
专题:集合
分析:(1)由M={y|y=log
1
2
x,0<x≤
1
4
}
={y|y≥2},N={y|y=2x,x≤2}={y|0<y≤4}.能求出M∩N.
(2)由集合A=M∩N={y|2≤y≤4},B={x|a-1≤x≤5-a,a∈R},B⊆A,能求出a的取值范围.
解答: 解:(1)∵M={y|y=log
1
2
x,0<x≤
1
4
}
={y|y≥2},
N={y|y=2x,x≤2}={y|0<y≤4}.
∴M∩N={y|2≤y≤4}.
(2)∵集合A=M∩N={y|2≤y≤4},
B={x|a-1≤x≤5-a,a∈R},B⊆A,
∴当B=∅时,a-1>5-a,解得a>2.
当B≠∅时,
a-1≥2
5-a≤4
a-1≤5-a
,解集为∅.
综上所述,a的取值范围是(2,+∞).
点评:本题考查交集的求法,考查实数的取值范围的求法,是基础题,解题时要注意函数性质的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网